NE150/215M Introduction to Nuclear Reactor Theory Spring 2022

Discussion 10: Reactor Kinetics and Long-Term Core Behavior April 20th, 2022

Helpful Readings: LB Ch. 7, LE Ch. 10

Ian Kolaja

Logistics

- Midterm 2 is next Thursday (April 28th)
- Max will be giving a review next Tuesday (April 26th) in class
- I plan on doing another midterm review over Zoom next Tuesday (April 28th) at 6:30 PM
 - First half will be conceptual overview
 - Second half will be practice problems

What do you want to do for discussion next week?

Normal discussion? Practice problems? Office Hour? Taking it off?

Homework 9 Q/A

- Similar to the other power integral problems we've done, but your variables are switched around
- For these problems, you don't have to worry about using extrapolated dimensions
 - No diffusion coefficient to use
 - 4 meters >> neutron diffusion length

Recall:
$$R = \Phi \Sigma_{\text{reaction}} \left[\frac{\text{reaction}}{\text{second} \cdot cm^3} \right]$$

- Fairly straightforward problem, but you'll need to calculate the appropriate cross section to use at 300°C as discussed in class on Tuesday
- Thermal cross sections can usually be found in the appendices of reactor physics books

- Review the derivation we did last week
- Remember, your removal cross section is the probability that a neutron is removed from a given group via absorption or scattering to another energy group
 - How might you calculate $\Sigma_{s,1\to 2}$ if needed?

- You have additional absorption in group 2 from boron, which will be weighted by its number density.
- Adding boron won't meaningfully affect the number densities of your other materials.

- We went over some examples last discussion, so you can see generally what the answers should look like
- Write down any assumptions you're making about the scattering between different groups
 - Note that there's no assumption of direct coupling, which means neutrons can scatter several groups over
 - Think about what physically makes sense (i.e. There shouldn't be any scattering from thermal energies to fast energies)

Reactor Kinetics Review

Reactor Kinetics Motivation

- Up until now, we've largely cared about steadystate conditions
- We need to incorporate time to understand:
 - Accident scenarios
 - Reactor control, shut-down, and start-up
 - Long-term fuel depletion and fission product build up

Recall: Reactivity

Reactivity measures deviation of k_{eff} from 1.

$$\rho = \frac{k_{eff} - 1}{k_{eff}}, \qquad [-\infty, 1]$$

Technically unitless, but its commonly expressed in units of pcm (percent mile) by multiplying by 10⁵. We won't be using pcm for today's discussion.

Delayed Neutrons

- Some fission fragments will emit neutrons when they decay
 - We call them delayed neutron precursors
- This must be accounted for in our neutron balances
- These decays happen at different timescales, so we typically group them together
 - 6 groups of precursors is standard
 - λ_i is the decay constant of group *i*
 - β_i is the fraction of all neutrons that come from group *i*

Delayed Neutron Groups for Thermal Fission in U-235

Group	Half-life (s)	Decay Constant (s ⁻¹)	eta_i
1	55.72	0.0124	0.000215
2	22.72	0.0305	0.001424
3	6.22	0.111	0.001274
4	2.30	0.301	0.002568
5	0.610	1.14	0.000748
6	0.230	3.01	0.000273

J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 2nd Edition, 1983, page 76.

Reactivity in Dollars

It can also help to express your reactivity relative to your delayed neutron response. We express reactivity in dollars or cents.

reactivity in dollars
$$=\frac{\rho}{\beta}$$

reactivity in
$$cents = \frac{100\rho}{\beta}$$

Example: If you 50 cents of reactivity, that means $\rho = \beta/2$

Reactivity and Delayed Neutrons

The relationship between inserted reactivity and delayed neutrons dictates whether a reactor can be controlled

- If $0 < \rho < \beta$, the reactor is **delayed critical** and controllable since its time response depends on delayed neutrons
- If $\rho = \beta$, the reactor is at a tipping point; it transitions between being supercritical on prompt neutrons instead of delayed neutrons
- If $\rho > \beta$, the reactor is super critical from prompt neutrons and cannot be controlled.

Point Reactor Kinetics Equation

$$\frac{dP}{dt} = \frac{\rho(t) - \beta}{\Lambda} P(t) + \sum_{j=1}^{6} \lambda_j C_j(t)$$

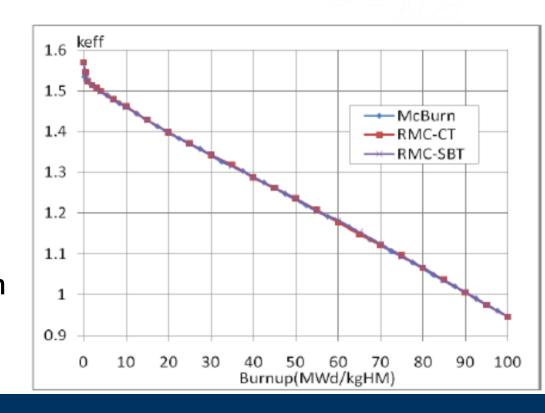
$$\frac{dC_j}{dt} = \frac{\beta_j}{\Lambda} P(t) - \lambda_j C_j(t), \qquad j = 1, ..., 6$$

If reactivity does not depend on time, then you can write:

$$\rho(t) = \rho_0$$

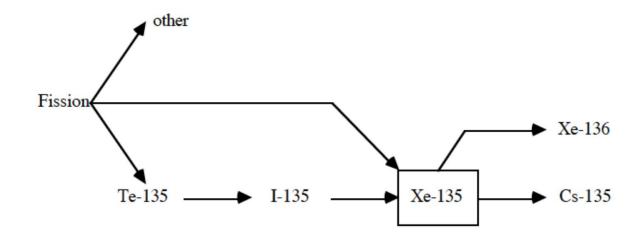
$$\Lambda = \frac{\ell}{k} = \text{mean neutron generation time,}$$
 where $\ell = P_{NL} \frac{1}{\Sigma_a \bar{\nu}}$

Long-Term Core Behavior


Fuel Depletion Analysis

- Over time, the composition of fuel materials will change due to exposure to neutron flux
- The fresh core must have enough excess reactivity to achieve the desired level of fuel burnup
- There are a handful of processes that must be tracked:
 - Fuel Burnup: the consumption of fissile nuclides
 - Fuel breeding: The conversion of fertile to fissile nuclides
 - Neutron poison buildup: The production of highly absorbing fission products

Fuel Burnup


- Over time, your fissile nuclides will be consumed for fission.
- This impacts your thermal utilization factor and reproduction factor
- The impact of fuel depletion is observed over weeks or months

- Fission products tend to absorb neutrons. Neutron poisons have exceptionally high thermal absorption cross sections.
- As they build up over the core lifetime, this can significantly impact reactivity.
- Xenon-135 is particularly important for this
 - It has a thermal absorption cross section over 10⁶ barns.
 - Its concentration can change quite quickly (within hours)
 - Xe-135 half life is 9.2 hours
 - I-135 decay feeds Xe-135, which has a 6.61h half life

You can describe the relationship between Xe-135 and I-135 with two coupled rate equations

$$\frac{d}{dt}I(t) = \gamma_I \overline{\Sigma}_f \phi - \lambda_I I(t)$$

= Production from fission — Decay of Iodine

And

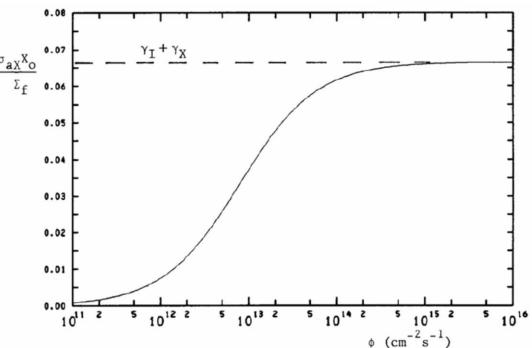
$$\frac{d}{dt}X(t) = \gamma_X \overline{\Sigma}_f \phi + \lambda_I I(t) - \lambda_X X(t) - \sigma_{aX} X(t) \phi$$

- = Production from fission + Decay from Iodine Decay of Xenon
- Xenon neutron absorption

Reaching equilibrium takes several half-lives, which usually means you'll have Xe-135 and I-135 equilibrium after 2-3 days.

$$I(t\to\infty)=\frac{\gamma_I\Sigma_f\phi}{\lambda_I}$$

And


$$X(t \to \infty) = \frac{(\gamma_I + \gamma_X)\overline{\Sigma}_f \phi}{\lambda_X + \sigma_{aX} \phi}$$

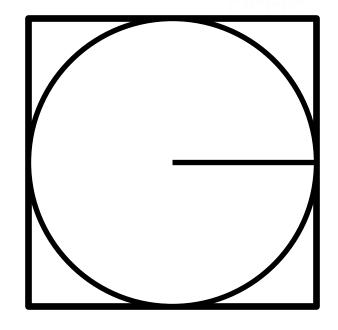
Equilibrium xenon poisoning as a function of neutron flux

If the flux, and thus absorption $\frac{\sigma_{ax}x_o}{\Sigma_f}$ rate, is much higher than the decay constant, the behavior changes:

$$\sigma_{a,x}\phi \gg \lambda_X$$

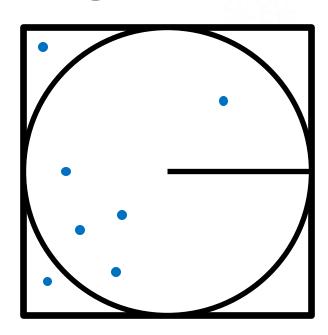
 $\Rightarrow X_{max}(t \to \infty) = \frac{(\gamma_I + \gamma_X)\Sigma_f}{\sigma_{a,X}}$

Extra Content (Not on exams)



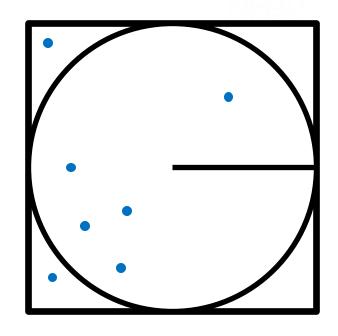
Monte Carlo Methods for Solving the Transport Equation

- We've used the diffusion equation as a deterministic approximation for solving the transport equation
- We can perform stochastic simulations with codes to solve it with very high detail using the Monte Carlo technique
 - Take many samples of a random variable and average
 - Good for processes that can be treated probabilistically
 - Very helpful for this application since mathematically we must integrate over many dimensions


You can randomly place dots in points in circle total points
$$= \frac{N_c}{N} = \frac{A_{circle}}{A_{square}}$$
$$= \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$
$$\pi \Rightarrow \frac{4N_c}{N}$$

$$\pi \Rightarrow \frac{4N_c}{N}$$

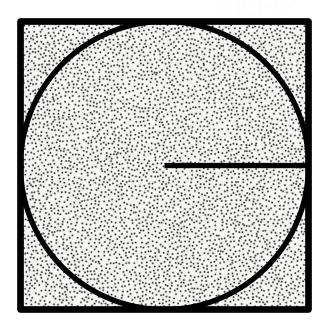
What is π ? Are there any problems with this?



$$\pi \Rightarrow \frac{4N_c}{N}$$

What is π ? Are there any problems with this?

$$\pi = \frac{4 \cdot 5}{7} = 2.86$$
 bad

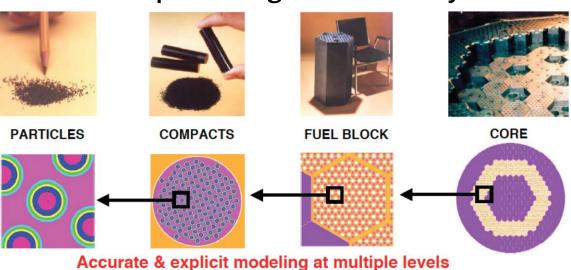

- Not enough samples
- Samples aren't uniformly distributed (is it truly random?)

Taking many more, uniformly distributed samples ends up giving us a much more reasonable result:

$$\pi \Rightarrow \frac{4N_c}{N} \Rightarrow 3.14$$

Monte Carlo for Neutron Transport

- A model of the reactor is constructed, and many independent particles are simulated within it
 - Physical processes like reactions are treated as probabilistic processes
 - We follow particles from birth until they are removed from the system
 - Each particle contributes to the solution
 - We determine the statistically-expected mean value and variance/uncertainty



Monte Carlo for Neutron Transport

Highly accurate, explicit models possible

Significant computation time required to get statistically

meaningful results

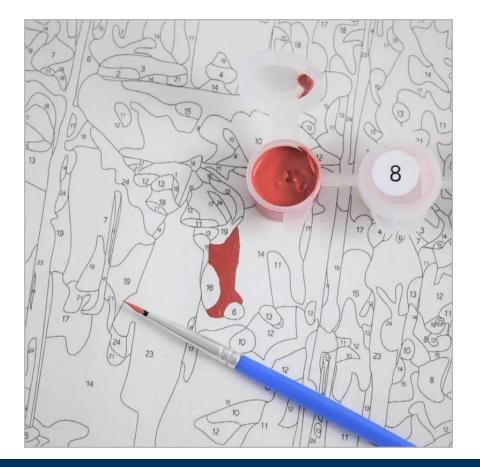
Kelly L. Rowland, "Numerical Simulations in Radiation Transport," Nov 6, 2019

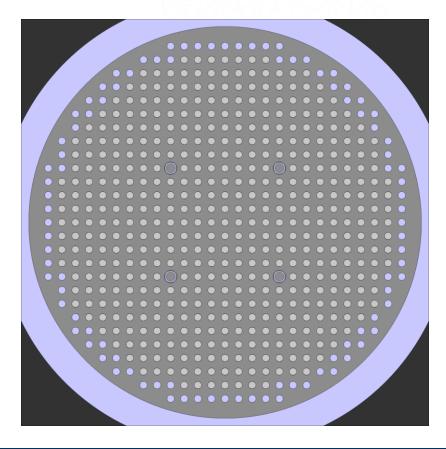
Monte Carlo Codes

- MCNP
- Serpent
- OpenMC
- Geant4
- Shift
- Mercury

Monte Carlo Application and Results

Monte Carlo programs can allow you to determine:


- Effective Neutron Multiplication Factor
- Neutron flux distribution (spatially and energetically)
 - Find hot spots and assess material damage
- Distribution of gamma rays for shielding
- Fuel material depletion and fission product generation
- Reactivity coefficients



Building Models

- Define surfaces to contain the geometry of your model
 - Cylinders, spheres, planes, etc.. are all stapes of your code of choice
- Define materials, with specific isotope compositions
 - You may have simple materials like water, and complex materials like stainless steel 316 with 15+ isotopes
- Define cells, which describe what material goes between what surfaces

Where to Learn More

- Take a class where Serpent or MCNP is used
 - NE155 has an MC section and gets into implementation
 - NE156 allows you to use it for criticality safety modeling
- Join a research group that does reactor modeling (like Max's!)
- Serpent has a tutorial in its Wikipedia
 - http://serpent.vtt.fi/mediawiki/index.php/Tutorial
 - Getting access to Serpent and MCNP can be a little involved as they generally require approval for a project or work
- OpenMC is open source

For Later Reference

In-Hour Equation

The solution to the 6-grop point kinetics equation is the In-Hour Equation (inverse hour)

$$\rho_0 = \frac{s\ell}{1 + s\ell} + \frac{1}{1 + s\ell} \sum_{i=1}^{6} \frac{s}{s + \lambda_i} \beta_i$$

In-Hour Equation Graphical Solution

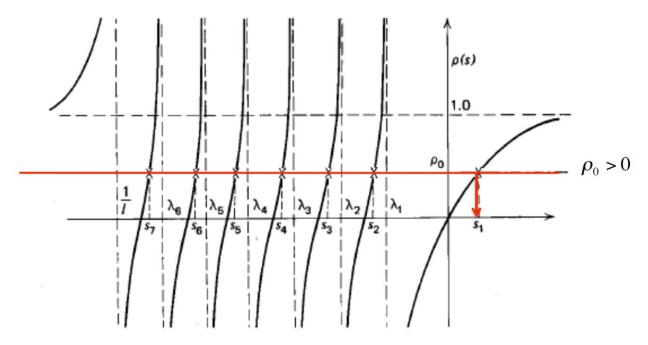


FIGURE 6-2. A graphical determination of the roots to the inhour equation

In-Hour Equation Observations

The solution of the In-Hour equation is dictated by ρ_0

- If $\rho_0 = 0$, then $s_1 = 0$ (critical)
- If $\rho_0 \to 1$, then $s_1 \to \infty$ (supercritical)
 - Calculate Tusing average neutron lifetime or graphically
- If $\rho_0 \to -\infty$, then $s_1 \to -\lambda_1$
 - Note: You cannot shut a reactor down any faster than T

Reactor Period
$$\equiv T = \frac{1}{\lambda_1} \approx 80s$$
 for ²³⁵U fueled reactor

