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Logistics

- Midterm 2is next Thursday (April 28th)
- Maxwill be giving a review next Tuesday (April 26t") in class

 Iplanon doing another midtermreview over Zoom next
Tuesday (April 28th) at 6:30 PM

— First half will be conceptual overview
— Second half will be practice problems
What do you want to do for discussion next week?

- Normaldiscussion? Practice problems? Office Hour? Taking
it off?

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Homework 9 Q/A
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Problem 1

- Similar to the other power integral problems we've done, but
your variables are switched around

- For these problems, you don’t have to worry about using
extrapolated dimensions

— No diffusion coefficient to use
— 4 meters >> neutron diffusion length
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Problem 2

Recall: R = X ., ction [secon d-cm3

- Fairly straightforward problem, but you'll need to calculate
the appropriate cross section to useat 300°C as discussed in

classon Tuesday
- Thermal cross sections can usually be found in the appendices
of reactor physics books

reaction ]
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Problem 3

« Reviewthederivationwedid last week

- Remember, your removal cross section is the probability
that a neutronis removed from a given group via absorption
or scattering to another energy group

— How might you calculate 3, , ,, if needed?
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Problem 4

« You haveadditional absorptionin group 2 from boron, which
will be weighted by its number density.

- Adding boron won’t meaningfully affect the number
densities of your other materials.
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Problem 5

- We went over some examples last discussion, so you can see
generally what the answers should look like

- Write down any assumptions you're making about the
scattering between different groups

— Notethat there's no assumption of direct coupling,
which means neutrons can scatter several groups over

— Think about what physically makes sense (i.e. There
shouldn’t be any scattering from thermal energies to fast
energies)
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Reactor Kinetics Review
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Reactor Kinetics Motivation

Up until now, we've largely cared about steady-
state conditions

We need to incorporate time to understand:
— Accident scenarios
— Reactor control, shut-down, and start-up

~ Long-term fuel depletion and fission product
ouild up
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Recall: Reactivity

Reactivity measures deviation of k- from 1.

keff - 1

p= N

Kers

Technically unitless, but its commonly expressed in units of pcm
(percent mile) by multiplying by 10°. We won’t be using pcm for
today’s discussion.
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Delayed Neutrons

Some fission fragments will emit neutrons when they decay
— We call them delayed neutron precursors
« Thismust beaccounted forin our neutron balances

- These decays happen at different timescales, so we typically
group them together

— 6 groups of precursors is standard
— JA;isthedecay constant of group i
— p;isthefraction of all neutrons that come fromgroup i
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Delayed Neutron Groups for Thermal
Fission in U-235

Group Half-life (s) Decay Constant (s) B;
1 55.72 0.0124 0.000215
2 22.72 0.0305 0.001424
3 6.22 0.111 0.001274
4 2.30 0.301 0.002568
5 0.610 1.14 0.000748
6 0.230 3.01 0.000273

J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 2nd Edition, 1983, page 76.
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Reactivity in Dollars

It can also help to express your reactivity relative to your delayed
neutron response. We express reactivity in dollars or cents.

reactivity in dollars = %
100p
B

Example: If you 50 cents of reactivity, that means p = /2

reactivity in cents =
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Reactivity and Delayed Neutrons

Therelationship between inserted reactivity and delayed
neutrons dictates whether a reactor can be controlled

- If0 < p < B, thereactoris delayed critical and
controllable since its time response depends on delayed
neutrons

- |If p = B, thereactorisatatipping point; it transitions
between being supercritical on prompt neutrons instead
of delayed neutrons

- Ifp > B, thereactoris super critical from prompt neutrons
and cannot be controlled.
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Point Reactor Kinetics Equation

6
dP p(t)—p
— =L rn+ Zajcj(t)
Jj=1
dC; B
] _ ] 1.7, ;
= P(t) - A,C(t), j=1,..,6
If reactivity does not depend on time, then you can write:
’ p(t) = po
1
A = — = mean neutron generation time, where £ = Py; ——
k X,V

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Long-Term Core Behavior
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Fuel Depletion Analysis

- Overtime, the composition of fuel materials will change due to
exposure to neutron flux

«  Thefresh core must have enough excess reactivity to achieve
the desired level of fuel burnup

« There are a handful of processes that must be tracked:
— Fuel Burnup: the consumption of fissile nuclides
— Fuel breeding: The conversion of fertile to fissile nuclides

— Neutron poison buildup: The production of highly
absorbing fission products
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Fuel Burnup

16 keff
- Overtime, yourfissile L5
nuclides will be consumed ——McBurn
o e 1.4 —a—RMC-CT
for fission. — RMICSET
- Thisimpactsyourthermal "’ |
utilization factor and 1.2 -
reproduction factor 11
- Theimpactof fueldepletion =,
Is observed over weeks or .
months 0 10 20 30 40 50 60 70 80 90 100
Burnup{MWd/kgHM)
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Neutron Poison Buildup

- Fission products tend to absorb neutrons. Neutron poisons
have exceptionally high thermal absorption cross sections.
- Astheybuildup overthecore lifetime, this can significantly
impact reactivity.
- Xenon-135is particularlyimportant for this
— Ithas athermal absorption cross section over10¢ barns.
— Its concentration can change quite quickly (within hours)

«  Xe-135 half lifeis 9.2 hours
* 1-135decayfeeds Xe-135, which has a 6.61h half life
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Neutron Poison Buildup

/ other
Fission

\ /—> Xe-136

Te-135 ——p 1135 ——p Xe-135 ——p Cs-135
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Neutron Poison Buildup

You can describe therelationship between Xe-135 and I-135 with
two coupled rate equations

d _
El(t) =y Zrp — A1(t)
= Production from fission — Decay of lodine

And
d _
Ex(t) = yxZrp + 4 I(t) — A4 X(t) — 0x X(t) P

= Production from fission + Decay from Iodine — Decay of Xenon
— Xenon neutron absorption
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Neutron Poison Buildup

Reaching equilibrium takes several half-lives, which usually
means you'll have Xe-135 and I-135 equilibrium after 2-3 days.

_ ylzfd)
I(t > ) = 7
And )
X(t - o0) = (y; + VX)Zfd)

AX + UaX¢
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Equilibrium xenon poisoning as a function
of neutron flux

If the flux,and thus absorption, , oo}  ve
rate, is much higherthanthe 75 .| —
decay constant, the behavior vos |
changes: i
O-a,x(p > AX ,.0 :

+ Z .02 i
S X, (t—o0) = (v + vx)Zs o /

O-a,X ! [ N 1 1 ! 1 1 1 1 1 ] | 1
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Extra Content (Not on exams)
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Monte Carlo Methods for Solving the
Transport Equation

We've used the diffusion equation as a deterministic
approximation for solving the transport equation

We can perform stochastic simulations with codestosolveit
with very high detail using the Monte Carlo technique

— Take many samples of arandom variable and average
— Good for processes that can be treated probabilistically

— Very helpful for this application since mathematically we
must integrate over many dimensions
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Simple Example: Calculating Pi

You can randomly place dots in
pointsincircle N.  Acircie
total points N Asquare
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Simple Example: Calculating Pi

4N,
T > ¥

Whatis ? Are there any problems

with this?
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Simple Example: Calculating Pi

N 4N,
"TN
Whatis ? Are there any problems
with this?

4.5
7 = 2.86 bad

Not enough samples
Samples aren’t uniformly
distributed (is it trulyrandom?)

T =
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Simple Example: Calculatlng Pi

Taking many more, uniformly
distributed samples ends up giving us
a much more reasonable result:

C
e 314
TZN
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Monte Carlo for Neutron Transport

- Amodel of thereactoris constructed, and many independent
particles are simulated withinit

— Physical processes like reactions are treated as probabilistic
processes

— We follow particles from birth until they areremoved from
the system

— Each particle contributes to the solution

— Wedetermine the statistically-expected mean value and
variance/uncertainty
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Monte Carlo for Neutron Transport

« Highlyaccurate, explicit models possible
- Significant computation time reqmred to get statlstlcally

meaningful results 1!’
a?

PARTICLES COMPACTS FUEL BLOCK

Kelly L. Rowland, “Numerical

Simulations in Radiation Transport,”
et ,llov 6 '20'19 P Accurate & explicit modeling at multlple levels
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Monte Carlo Codes

- MCNP

- Serpent
- OpenMC
- Geant4
- Shift

- Mercury
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Monte Carlo Application and Results

Monte Carlo programs can allow you to determine:

- Effective Neutron Multiplication Factor

- Neutron fluxdistribution (spatially and energetically)
— Find hot spots and assess material damage

- Distribution of gamma rays for shielding

 Fuel material depletion and fission product generation

- Reactivity coefficients
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Building Models

- Define surfaces to contain the geometry of your model

— Cylinders, spheres, planes, etc.. are all stapes of your code
of choice

- Define materials, with specific isotope compositions

— You may have simple materials like water, and complex
materials like stainless steel 316 with 15+ isotopes

 Define cells, which describe what material goes between what
surfaces
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Where to Learn More

- Takeaclass where Serpent or MCNP is used

— NE155 has an MC section and gets into implementation

— NE156 allows you to use it for criticality safety modeling
- Join aresearch group that does reactor modeling (like Max's!)
- Serpent has a tutorial in its Wikipedia

— http://serpent.vtt.fi/mediawiki/index.php/Tutorial

— Getting access to Serpent and MCNP can be a little involved
as they generally require approval for a project or work

- OpenMC is opensource
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http://serpent.vtt.fi/mediawiki/index.php/Tutorial
http://serpent.vtt.fi/mediawiki/index.php/Tutorial

For Later Reference
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In-Hour Equation

The solution to the 6-grop point kinetics equation is the In-
Hour Equation (inverse hour)

B st N 1 26: S
Po =1 sp 1+s£_1s+/1iﬁ"
i=
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In-Hour Equation Graphical Solution

| | | 1 | A

| : | || :

| rol | s
l | ! |

| L 1.0

FIGURE 6-2. A graphical determination of the roots to the inhour equation
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In-Hour Equation Observations

The solution of the In-Hour equation is dictated by p,
- Ifp, = 0,thens; = 0(critical)
- Ifp, » 1,thens; - o (supercritical)
- Calculate Tusing average neutron lifetime or graphically
- Ifp, » —oo,thens; » -1,
- Note: You cannot shut a reactordown any faster than T

Reactor Period =T = = 80s for 23°U fueled reactor
1

Berkeley
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