NE150/215M Introduction to Nuclear Reactor Theory Spring 2022

Discussion 4: Criticality February 16, 2022

Helpful Readings: Lewis Elmer Ch 4, Lamarsh&Barata Ch 4, 6

Ian Kolaja

Hello!

Office Hour: (Virtual) Tentatively, 3PM on Friday.

Email: ikolaja@berkeley.edu – include NE150 in subject!

Submit questions/feedback: tinyurl.com/2022ne150qa

Review

Neutron Multiplication Factor

The multiplication factor represents how a fission neutron population is changing in a system over each generation.

$$k = \frac{Production \ rate \ of \ neutrons \ from \ fission}{loss \ rate \ of \ neutrons \ from \ leakage \ and \ absorption} \equiv \frac{P(t)}{L(t)}$$

Neutron Multiplication Factor

k describes neutron chain reaction behavior for three situations

- Subcriticality (k < 1)
 - Neutron population & power decrease
- Criticality (k = 1)
 - Chain reaction is time independent
 - Desired for reactor operation
- Supercriticality (k > 1)
 - Neutron population & power increase

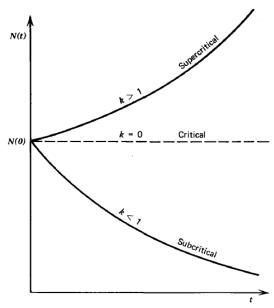


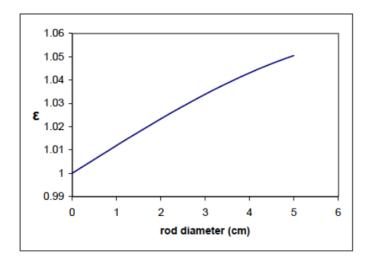
FIGURE 3-2. Time behavior of the number of neutrons in a reactor.

Duderstadt, Hamilton 1976

Fermi's Six Factor Formula

Fermi derived an equation for calculating k. You essentially "follow" a fission neutron through the possible events that can happen to it and use the probabilities & the number of neutrons produced to calculate $k_{\rm eff}$.

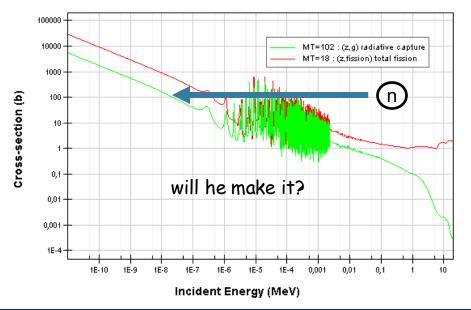
$$k_{eff} = \underbrace{\varepsilon p f \eta P_{FNL} P_{TNL}}_{\mathbf{k}_{\infty}} Leakage$$


Material Geometry

Fast Fission Factor, ε

 $\varepsilon = \frac{\text{# neutrons produced from both thermal and fast fissions}}{\text{# neutrons produced by thermal fissions only}}$

- Captures the fast neutrons that fission in a fuel element before leaving, largely occurring in U-238
- Always greater than one
- Typically around 1.00–1.04.



Resonance escape probability, p

- The probability that a neutron passes through the resonance region without being absorbed
- Always less than 1

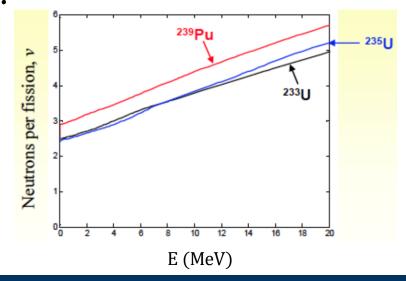
Incident neutron data / ENDF/B-VII.1 / U235 / / Cross section

Thermal neutron utilization factor, f

The fraction of thermal neutrons that are absorbed in fuel materials over those absorbed in all reactor materials. For a **homogenous** mixture of materials:

$$f = \frac{\Sigma_a^{Fuel}}{\Sigma_a^{Fuel} + \Sigma_a^{Non-Fuel}}$$

It's not pretty for heterogenous reactors!


Thermal neutron reproduction factor, η

The ratio of neutrons produced by fission over the number of thermal neutrons absorbed in the fuel.

For a **homogenous** mixture of materials:

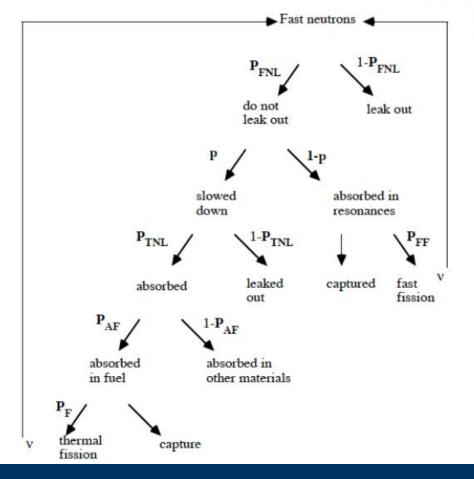
$$v \frac{\sum_{f}^{Fuel}}{\sum_{G}^{Fuel}}$$

 $\nu(E)$ = Average number of neutrons per fission (About 2.5 for thermal) $\nu(E)$ increases significantly for high E

Non-leakage probabilities, P_{FNL} and P_{TNL}

- The probability that fast and thermal neutrons do not leak out of the core respectively $(P \le 1)$
- Related purely to the geometry of the reactor
- When would they be equal to 1?

$$P_{NL} \equiv \frac{Total \ absorptions}{Total \ absorption + leakaage \ neutrons}$$


Non-leakage probabilities, P_{FNL} and P_{TNL}

- The probability that fast and thermal neutrons do not leak out of the core respectively $(P \le 1)$
- Related purely to the geometry of the reactor
- When would they be equal to 1?

In an infinitely large system, you get the four factor formula.

if infinite,
$$P_{FNL} = P_{TNL} = 1$$
 $k_{\infty} = \varepsilon p f \eta$

Six Factor Formula Terms $k_{eff} = \epsilon p f \eta P_{FNL} P_{TNL}$

Var.	Name	Definition
ε	Fast fission factor	The total number of neutrons produced (from both thermal and fast fissions) divided by just the number of thermal fissions.
р	Resonance escape probability	The probability that a neutron passes through the resonance region (see cross section plot) without being absorbed (<1)
f	Thermal neutron utilization factor	The fraction of thermal neutrons that are absorbed in fuel materials over those absorbed in all materials.
η	Thermal neutron reproduction factor	The ratio of neutrons produced by fission over the number of thermal neutrons absorbed in the fuel.
P_{FNL}	Fast neutron non-leakage probability	The probability that a fast neutron does not leak out of the reactor
P_{TNL}	Thermal neutron non- leakage probability	The probability that a thermal neutron does not leak out of the reactor

Discuss

- 1. What assumptions are being made with the six-factor formula?
- 2. What are the challenges in using the six-factor formula for real reactor designs?

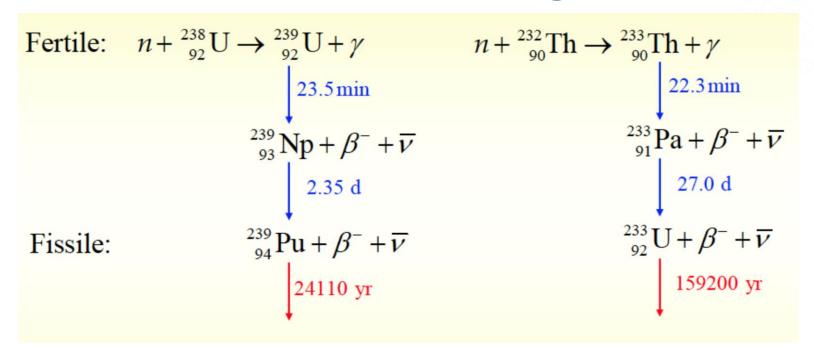
Reactivity

Reactivity measures deviation of k_{eff} from 1.

$$\rho = \frac{k_{eff} - 1}{k_{eff}}$$

Technically unitless, but its commonly expressed in units of pcm (percent mile) by multiplying by 10^5 .

Fuel Conversion/Breeding


- Fertile materials in the reactor can capture neutrons and decay into fissile materials.
- This can prolong your reactor operation before refueling
- Breeder reactor designs exploit this to create more fissionable material than they consume

$$C = \frac{Production\ rate\ of\ fissile\ material}{Consumption\ rate\ of\ fissile\ material} \rightarrow \frac{Absorption\ in\ U^{238}}{Absorption\ in\ U^{235}}$$

Called "Breeding Ratio, Bif greater than 1.

Fuel Conversion/Breeding

Practice

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

- 1. What terms of the six factor formula are relevant?
- 2. What is the reactivity of the system?

	²³⁸ U	²³⁵ U
$\sigma_{\!\scriptscriptstyle \gamma}$	2.72	101
$\sigma_{\!f}$	0.0	579

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

1. What terms of the six factor formula are relevant?

Because it is infinite, $k_{\infty} = \varepsilon p f \eta$

Because we neutrons are at thermal energies, $k_{\infty} = f\eta$

Because the reactor is homogenous,

$$k_{\infty} = \left(\frac{\Sigma_{a}^{Fuel}}{\Sigma_{a}^{Fuel} + \Sigma_{a}^{Non-Fuel}}\right) \left(\nu \frac{\Sigma_{f}^{Fuel}}{\Sigma_{a}^{Fuel}}\right) = \frac{\nu \Sigma_{f}^{Fuel}}{\Sigma_{a}^{Fuel} + \Sigma_{a}^{Non-Fuel}}$$

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

$$k_{\infty} = rac{
u \Sigma_f^{Fuel}}{\Sigma_a^{Fuel} + \Sigma_a^{Non-Fuel}}$$

	²³⁸ U	²³⁵ U
σ_{γ}	2.72	101
$\sigma_{\!f}$	0.0	579

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

$$k_{\infty} = \frac{\nu \Sigma_{f}^{Fuel}}{\Sigma_{a}^{Fuel} + \Sigma_{a}^{Non-Fuel}}, \qquad e = \frac{N^{235}}{N^{235} + N^{238}}$$
$$k_{\infty} = \frac{\nu N^{235} \sigma_{f}^{235}}{N^{235} (\sigma_{f}^{235} + \sigma_{\gamma}^{235}) + N^{238} \sigma_{\gamma}^{238}}$$

	238U	235U
σ_{γ}	2.72	101
$\sigma_{\!f}$	0.0	579

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

$$k_{\infty} = \frac{ve\sigma_f^{235}}{e(\sigma_f^{235} + \sigma_{\gamma}^{235}) + (1 - e)\sigma_{\gamma}^{238}}$$
$$k_{\infty} = (2.5)(0.547) = 1.37$$

	²³⁸ U	235U
σ_{γ}	2.72	101
$\sigma_{\!f}$	0.0	579

Assume that we have an infinite, homogenous mixture of U-235 and U-238 at thermal energies. The enrichment of the uranium, e, is 0.007 (0.7 a/o).

$$k_{\infty} = 1.37, \qquad \rho = \frac{k-1}{k} \times 10^5 \ pcm$$

$$\rho = \frac{1.37 - 1}{1.37} 10^5 = 27007 \ pcm$$

A subcritical assembly has a multiplication factor of 0.975. It has an initial neutron N_0 population of 10^6 . Assume that $\nu=2.5$ neutrons are produced per fission.

- 1) How many neutrons will be in the assembly after the 1st generation of fission events?
- 2) How many neutrons will be in the assembly after the nth generation of fission events?
- 3) Can you calculate how many neutrons are in the assembly after a million generations? What if $k_{eff}=1.025$?

A subcritical assembly has a multiplication factor of 0.975. It has an initial neutron N_0 population of 10^6 . Assume that $\nu=2.5$ neutrons are produced per fission.

1) How many neutrons will be in the assembly after the 1st generation of fission events?

$$N = N_0 k_{eff} = (10^6)(0.975) = 975,000 neturons$$

A subcritical assembly has a multiplication factor of 0.975. It has an initial neutron N_0 population of 10^6 . Assume that $\nu=2.5$ neutrons are produced per fission.

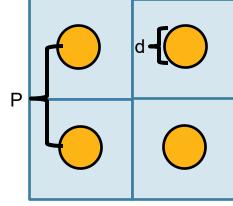
2) How many neutrons will be in the assembly after the nth generation of fission events?

$$N = N_0 k_{eff}^n$$

A subcritical assembly has a multiplication factor of 0.975. It has an initial neutron N_0 population of 10^6 . Assume that $\nu=2.5$ neutrons are produced per fission.

3) Can you calculate how many neutrons are in the assembly after a million generations? What if $k_{eff} = 1.025$?

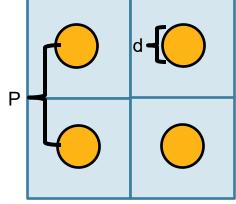
As n gets really big, k_{eff}^n converges to 0.


If k_{eff} is greater than 1, k_{eff}^n increases without bound.

Can your calculator handle $(1.025)^{10^6}$?

A reactor is to be built with fuel rods of diameter d=1.2cm and a liquid moderator. There is a 2:1 volume ratio of moderator to fuel. If the fuel is arranged in a square lattice, what is the pitch distance

P between the center lines of each fuel rod?

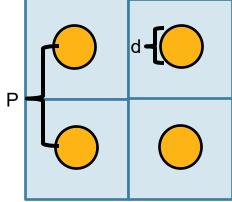


A reactor is to be built with fuel rods of diameter d=1.2cm and a liquid moderator. There is a 2:1 volume ratio of moderator to fuel. If the fuel is arranged in a square lattice, what is the pitch distance

P between the center lines of each fuel rod?

Write the volume of each component

$$V_f = h\pi \left(\frac{d}{2}\right)^2$$
, $V_m = hP^2 - V_{rod}$

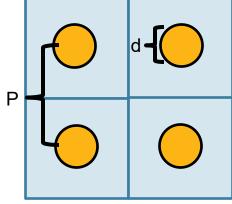


A reactor is to be built with fuel rods of diameter d=1.2cm and a liquid moderator. There is a 2:1 volume ratio of moderator to fuel. If the fuel is arranged in a square lattice, what is the pitch distance

P between the center lines of each fuel rod?

You're given the volume ratio, and h cancels out

$$2V_f = V_m, \qquad 2hA_f = hA_m$$
$$2\pi \left(\frac{d}{2}\right)^2 = P^2 - \pi \left(\frac{d}{2}\right)^2$$



A reactor is to be built with fuel rods of diameter d=1.2cm and a liquid moderator. There is a 2:1 volume ratio of moderator to fuel. If the fuel is arranged in a square lattice, what is the pitch distance

P between the center lines of each fuel rod?

Solve algebraically and plug it for d = 1.2cm

$$P = \sqrt{\frac{3}{4}\pi d^2} = 1.842$$

