NE150/215M Introduction to Nuclear Reactor Theory
Spring 2022

Discussion 6: Diffusion Equation

March 16th, 2022
Helpful Readings: LE Ch.6, LB Ch.5

Ian Kolaja
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Warmup

1) Aheterogenousreactorcore is fueled with UO,. The
volumetric composition of the coreis 45% fuel, 35% coolant

and 20% structural material. The fluxis uniform. Calculate the
thermal utilization factor.

Material | X (em™) | 2, (em™)

Uo, 0.001 0.010
Na — 0.00008
Fe — 0.0007

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Warmup

1) Aheterogenousreactorcore is fueled with UO,. The
volumetric composition of the coreis 45% fuel, 35% coolant

and 20% structural material. The fluxis uniform. Calculate the
thermal utilization factor.
o therm.neutrons absorbed in fuel

~ therm.neutrons absorbed in all materials

Material | X (em™) | 2, (em™)

Uo, 0.001 0.010
Na — 0.00008
Fe — 0.0007
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Warmup

1) Aheterogenousreactorcore is fueled with UO,. The
volumetric composition of the coreis 45% fuel, 35% coolant

and 20% structural material. The fluxis uniform. Calculate the
thermal utilization factor.

Z(J;uelvfuelgbfuel

f

- Zguelvfuelgbfuel + ZEOOIVCOOZ¢COOI + ZCSLtrCVStrC¢StTC
Material | T (em™) %, (cm™)

Uo, 0.001 0.010
Na — 0.00008
Fe — 0.0007
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Warmup

1) Aheterogenousreactorcore is fueled with UO,. The
volumetric composition of the coreis 45% fuel, 35% coolant

and 20% structural material. The fluxis uniform. Calculate the
thermal utilization factor.

Zguelvfuel

f

Uo, 0.001 0.010
Na — 0.00008
Fe — 0.0007
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Warmup

1) Aheterogenousreactorcore is fueled with UO,. The
volumetric composition of the coreis 45% fuel, 35% coolant
and 20% structural material. The fluxis uniform. Calculate the
thermal utilization factor.

(0.010 cm™1)(0.45)
(0.010 cm=1)(0.45) + (0.00008 cm~1)(0.35) + (0.0007 cm~=1)(0.2)

f
f

= 0.964 Material | T (em™) %, (cm™)
Uo, 0.001 0.010
Na - 0.00008
Fe — 0.0007
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Logistics
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Reminder: Grading

| do not grade homework or exams!
HW Grading: Evan Still evanstill@berkeley.edu
Exam Grading: Max
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mailto:evanstill@berkeley.edu

Survey results: Discussion Priorities

Reviewing old concepts (previous week(s))

9 responses

6
5 (55.6%)
4
3 (33.3%)

2

0 (0%) 0 (0%) 1(11.1%)
0

1 2 3 4 5
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Survey results: Discussion Priorities

Reviewing fresh concepts (this week's lectures)
9 responses

8
7 (77.8%)
6
4
2 2 (22.2%)
0 (0%) 0 (0%) 0 (0%)
0
1 2 3 4 5
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Survey results: Discussion Priorities

Practicing relevant math techniques

9 responses

3 3 (33.3%)

2 (22.2%) 2 (22.2%) 2 (22.2%)
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Survey results: Discussion Priorities

Analytical practice problems

9 responses

8
7 (77.8%)

6

4

2 2 (22.2%)

0 (0%) 0 (0%) 0 (0%)
0
1 2 3 4 5
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Survey results: Discussion Priorities

Conceptual practice problems / open ended discussions

9 responses

4

4 (44.4%)
3
3 (33.3%)
2
1
1(11.1%) 1(11.1%)
0 (0%)
0
1 2 3 4 5
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Survey results: Serpent workshop

Would you attend an optional Serpent workshop if you were available at the time?
9 responses

@ Yes
® No

)
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Survey results: Office Hours

Would you like lan's office hours rescheduled? Would you physically go to lan's office hours if they were in person?

)

9 responses 9 responses

® Yes
® No

NV
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Review
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Last Time: Neutron Transport Equation

i%lb( E,Q t)+Q V?,D(T E,Q ) 4 2 (7, E)@b(ﬁE,Q,tl

time rate of change

:/ / S, (F E = E.Q — Qw(r, B QY )dY dE

streaming loss rate total inter action loss rate

'/ d! ™~ il ~ 7
in scattering source rate
=vi Xp(E) [~ Ny
4o / / v(ENS (7, EN(7F, B, Y, t)dY dE’
: R dm 0 Am ,

fission source rate

+ S(F, E,Q,t) .

external source rate

NE155 notes, Fall 2019
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What if you don’t want to analytically
solve the transport equation?

- lgetit
- Also, thisisn't NE155
- We'll be using the diffusion equation

- This approximation largely depends on neglecting
the angular dependence of flux.

- Physically, this means that neutrons move with their
concentration gradient as in Fick's Law.
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Fick’s First Law

- Statement that flux of diffusing
species goes from regions of high
concentrationtoregions of low
concentration, proportional to "t pes ° s o4
concentration gradient. % {: P _ oo

J =—DV¢
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Math Review: Gradient

Let f be a scalar-valued, differentiable function f of several variables (x4, ... x,).
The gradient Vf at point p is the vector whose partial derivatives are given as

below:
f
o, (p)
Vi(p) = af:
x, (P)_
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Diffusion Equation (Monoenergetic)

19¢(7,t R e N
- qb(gt ) =S(rt) —X,(r)op(t) +V-D(@)Vep(r,t)
Rateof Change Source  Absorption Leakage

With one neutron energy.

n
#(, 1),  Scalar Flux (—)

D(r), Diffusion Coefficient, (cm)

H#
Sext(T, 1), Independent source of neutrons (cm3 s)
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Diffusion Equation (Simplified)
0=S{) —Z,¢() +DV*p(7)

Rateof Change Source  Absorption Leakage

Steady state, with one neutron energy, uniform.

Diffusion Length: L? = 22 [cm?]

a
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Math Review: Laplace operator

The Laplacian is the divergence of the gradient of a scalar function. Intuitively,
the Laplacian Af (p) of a function f at point p tells you how much the average
value of f over small spheres centered at p deviates from f(p)

n

52
V.V f =V2f = div(grad(f)) =Af=26 !
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Math Review: Laplace operator

Geometry A = V2 = (General) A =V?= (1D)
62 62 02 az
Cartesian -
ax2 " dy? T 92
Cylindrical 190,09 + 1 0 + 0° 10 9
y ror or 12 dp?  0z? ror or
19 ,0 1 0 d 1 0 19 ,0
Spherical 2 ' 2
P r2or 6r+r2 sin 8 06 Sm060+r2 sin? 0 d¢? r2or  or

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Diffusion Equation Assumptions

Assumption 1) Scattering is isotropic in the LAB

coordinate system

1 Aer _
=33 Yo = 2(1 — 1), where u = cos 6

Assumption 2) The scattering cross section is much
higher than the absorption
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Diffusion Equation Assumptions

Assumption 3) The medium is infinite

Assumption 4) Flux varies slowly with position

ﬁgﬁ}:l}igl@y NE150/215M - Discussion- lan Kolaja



Diffusion Equation Applicability

The assumptions that go into the diffusion equation
arevalid when the solutionis not:

1. Near avoid

2. Near a boundary where material properties
change rapidly

3. Nearalocalized source
4. Ina strong absorber
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Boundary Conditions

1) Initial Condition
Specifies the neutron flux for all positions at the initial

time
2) Finite Flux

For flux to physically make sense, it must be real, non-
negative, and finite. (Away from localized sources)

0<¢p(rt) <
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Boundary Conditions

3) Vacuum s 3
Neutrons cannot enter the 5 2
reactor from the outside; thus, N i
inward directed partial current A 3
vanishes at reactor boundary

d_"~d
Ddcp S
] (x,) = —qb(x ) + x, =0, o1 medium [vacum |
d(X;) =0, where xS = xS + 2D X X
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Boundary Conditions

4) Interface

The flux and normal component of the current are
continuous at an interface 7, between two
different materials.

¢1(7_ﬂ:s't) — ¢2(7:)S't)1 ]1(7:)311:) :]2(7:)511:)
—D;Vg, (7_";) = —D, Vo, (7_";)
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_ D

= Bag

Boundary Conditions

4) Interface

N\
~ S~

_______ e ey !

X

/1 h/2

T2l 13 ;
“Boundary Conditions — Diffusion 12 > I2 = steeper slope of ¢(x)
Equation”, nuclear-power.com T zsz = L%

Beﬂ{fﬂe / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Boundary Conditions

5) Source

All of the neutrons flowing through the bounding
areaof a neutron source have to come fromiit.

S(xy) = xlgyrclo ] ?.dS (General)
S
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Boundary Conditions

5) Source

Planar Source: lirré J(x) =
X—

Point Source: lirr(1) Anr?](r) =S
Tr—

Line Source: ling 2nr](r) =S
Tr—

Beml}iglgy NE150/215M - Discussion- lan Kolaja

UNIVERSIT



Practice
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Infinite Planar Source

Consideran infinite planar source
emitting S neutrons per cm?/secin
aninfinite diffusing medium.
Determine ¢ (x).
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

10¢(7,t)
v 0t

=S#t) —2,()p(r,t) + V- D(@F)Vep(F, t)
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

199, t)

=S#t) —2,()p(r,t) + V- D(@F)Vep(F, t)

v 0t
Noting steady state, that source only exists at x = 0, and uniformity.
d¢p 1
dxz—ngb:O, x # 0
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

d?¢p 1
dx2 2 ¢ =0,
The general solution to this second order differential eq is:
¢ — Cle_x/L + Czex/L

x#*0
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

d = Cie ¥/t + C,e*/t
BC1) Flux must befinite, evenas x - coorx » —oo

Consideringwhen x > 0, constant ¢, must equal O.
d(x) = C,e /L, x>0
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

d(x) = Cre /1, x>0
BC2)Sourceatx =0

limJ(x) =

x—0 2
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

d(x) = Cie /", lim J(x) =g

x—0
Inserting this into Fick’s Law

do Ci _,
— DL — _pD—p—Xx/L
/ Ddx DLe
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

x—0

d(x) = Cie /", lim J(x) =g

Take the limitasx — 0 to get:

S SL
= — —_—pX/L
G =55 = ¢lx) =-5e
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Infinite Planar Source /

Consider an infinite planar source emitting S
neutrons percm?/secin an infinite diffusing r=0
medium. Determine ¢ (x).

You could solve this for x < 0, or just note the symmetry:

SL
_ 2% X)L
¢d(x) 55 €
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Point Source

Consider a point source emitting S neutrons per
second isotopically inan infinite diffusing
medium. Determine ¢ (r).

2 point
@
source
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— —— -
- -

2 point
[
source

Point Source

Consider a point source emitting S neutrons per
second isotopically in an infinite diffusing medium.
Determine ¢ (7).

1d ,dp ¢ 0
r2dr dr 12
The general solution to this second order differential eq is:

e—r/L er/L
=C +C
b= C——+C—
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— —— -
— -

2 point
[
source

Point Source

Consider a point source emitting S neutrons per
second isotopically in an infinite diffusing medium.
Determine ¢ (7).

e—r/L er/L

=C C
¢1r+2r

BC 1) Flux must befinite, even asr — o, so once again constant ¢,
must equal O

e—r/L
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N
- -

2 point
[
source

Y

Point Source

Consider a point source emitting S neutrons per
second isotopically in an infinite diffusing medium.
Determine ¢ (7).

~
N

e—r/L

BC2)Sourceatr =0
ling Ar?](r) =S
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— —— -
— -

2 point
[
source

Point Source

Consider a point source emitting S neutrons per
second isotopically in an infinite diffusing medium.
Determine ¢ (7).

e—r/L

¢ = C; , lim4nr?J(r) =S
T r—0

Again, inserting thisinto Fick’s Law:
do 1 1\ _r
]:—D—=DCl(—+—>e L

dr rl, 1?2
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— —— -
— -

2 point
[
source

Point Source

Consider a point source emitting S neutrons per
second isotopically in an infinite diffusing medium.
Determine ¢ (7).

Using Fick’s Law and the Source BC, we take the limit:

limr?/(r) = S = C, = >
qmrejin) =220 =0
Finally we get:
S e—T/L
¢ = 4D r
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Point Source Geometry

Say you have two point sources emitting S neutrons/sec are
located 2a cm apart. Derive expressions for the flux at the point P,
midway between the sources.
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Point Source Geometry

Say you have two point sources emitting S neutrons/sec are
located 2a cm apart. Derive expressions for the flux at the point P,
midway between the sources.

e—a/L

4dtDa

d(Py) =2 X
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