NE150/215M Introduction to Nuclear Reactor Theory
Spring 2022

Discussion 8: Diffusion Equation

April 6th, 2022
Helpful Readings: LE Ch.7, LB Ch.6

Ian Kolaja
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Warmup

1) Suppose the flux of a cylindrical reactor is given by:
g = 1X 107 (24 T 2) n
Pz =—5 5" c0s (1352) [

What is the power densityatr = 9cm, z = 34cm?
(Note: /,(0.432) ~ 0.969, 1 MeV = 1.602 x 10~13))

2) Acritical, bare cylindrical reactor has aradius of 160cmand a
geometric buckling B2 = 4 x 10~* cm~2. What is the height?
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Warmup

1) Suppose the flux of a cylindrical reactor is given by:

12
¢(r,z) = : ijco Jo (2537,> cos (172TO ) ng, S]

What is the power densityatr = 9cm, z = 34cm?
(Note: /,(0.432) ~ 0.969, 1 MeV = 1.602 x 10~13))
p=EfXe¢
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Warmup

1) Suppose the flux of a cylindrical reactor is given by:

12
¢(r,z) = : ijco Jo (2537,> cos (172TO ) ng, S]

What is the power densityatr = 9cm, z = 34cm?

(Note: J,(0.432) =~ 0.969, 1 MeV = 1.602 x 10713))
p = EfZ:p =200 MeV (4 x 10'2)],(0.432) cos(0.890)

78.15 W
P = cm3
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Warmup

2) Acritical, bare cylindrical reactor has a radius of 160cmand a
geometric buckling B2 = 4 x 10~* cm~2. What is the height?
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Warmup

2) Acritical, bare cylindrical reactor has a radius of 160cmand a
geometric buckling B2 = 4 x 10~* cm~2. What is the height?

o [2405\° (w2
8 =5 =) *+(7
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Warmup

2) A critical, bare cylindrical reactor has a radius of 160cm and a
geometric buckling B2 = 4 x 10~* cm~2. What is the height?

o [2405\° (w2
8 =5 =) *+(7
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Homework Q/A
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Review
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Math Review: Bessel Functions

Thesolutions to the following
differential equation are known as
Bessel functions J,,(x) and Y,,(x)
2
x2%+x%+(x2 —n?)f=0 |
Describes things like vibrationsin -«
drums, dynamics of floating bodies,

and flux in cylindrical reactors
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Math Review: Bessel Functions

- With the diffusion equation, these usually appearin
the general solution of cylindrical geometries

- Theyalso have higher order mode solutions
—~ Weonlycareaboutn =0

1d do,(r)
rdrr dr

= ¢, = C1/o(B,1) + CYo(B,1)

+ Br%gbn(r) =0
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Math Review: Bessel Functions
J.(x), FirstKind Yn(x), Second Kind
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Notice where the functions are negative
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Math Review: Bessel Functlons

- Evaluate numerically N o
(Wolfram alpha) st 7 *
- You maysee 2.405 ol m :
written as v, 0 s
d A L N O
d_ [xm]m(x)] — xm]m—l(x) o4 Tolv) i |
X y -06-/ : :
| whea =whe
0 — x, = 2.405 *
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Reflectors

- Areflectorisanon-multiplying layer around a
reactor core that scatters neutrons back in

— Reduces neutron leakage

- Materials like graphite, beryllium, steel
— Low absorption
— High elastic scattering

— Inthermalreactors, lower A desired
for better moderation
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Reflector Effects

- Reduces critical size of active core (or enrichment)

. — pb reflected

Reflector Savings = RE%e.o — RLchect

- Reduces power peaking factor (or max-to-average flux ratio)
¢
PPF = quax, where ¢ 0 = v odV
avg V
- Increases neutron fluxin [Refecr Core Reflector
core near the boundary N L~
/ M 0N — With
,f - \\ - | Reflector
ff‘f A\
Without
/ Reflector AN
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Reflectors and the Diffusion Equation

Reflectors create additional regions you must solve
separately for

— Interface boundary condition should be used
— Reflectors aren’t multiplying so no source
- B2 # BZ nolonger applies, so finding the criticality
condition takes extrawork
]core (R) ]reflector (R)

(pcore (R) ¢reflector (R)

(from interface)
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Recall: Interface Boundary Condition

The flux and normal component of the current are
continuous at an interface 7, between two different
materials.

¢1(7:>s) — ¢2(7_":s)
]1(7_")5) :]2(7::5) or -— D1V¢1(7_”;) — _Dzvﬁbz(f;)
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Diffusion Equation Problem Strategy

1. Start with the general equation and simplify, applying
correct Laplacian for geometry

2. Write the corresponding general solution for each region

3. Eliminate termsthat become negative, infinite, or
violate symmetry within your geometry

4. Applyboundary conditions
5. Determine critical condition (bare vs reflected)
6. Integrate power density to get magnitude of flux shape
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Homework 8 Tips

- If geometryisn’t bare, you must determine flux and
current for each region to get the criticality condition

— Theycanberelated with the interface BC
- Forsimplifying criticality conditions, reviewing
hyperbolic trig identities will be helpful

- eX — e X - e’ + e 2
sinhx = coshx =
_ 2 ’ 2
sin x COS X cosh x
tanx = , cotx = ——, cothx = —
COS X sin x sinh x
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Practice
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is theradius given that Np,, = 3.95 x 10%! at/cm?® and Ny, =
2.39 x 1022 at/cm3?
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is the radius given that N,,, = 3.95 x 10%! at/cm® and Ny, =
2.39 x 1022 at/cm3?
Critical condition for bare spherical reactor:

By = B;

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and

Na. What is theradius given that Np,, = 3.95 x 10%! at/cm?® and Ny, =
2.39 x 1022 at/cm3?

Critical condition for bare spherical reactor:
) koo —1 VZf — Za
Bm = =
L? D

7T2
B2=(T>
9 \R
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is theradius given that Np,, = 3.95 x 10%! at/cm?® and Ny, =
2.39 x 1022 at/cm3?

(Z)z L vPUY =30

R D
Pu Na
0, 2.11b 0.0008b
of 1.85b 0.0b
o 6.8b 3.3b
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is the radius given that Ny, = 3.95 x 10%! at/cm’ and Ny, =
2.39 x 1022 at/cm3?

(Z)ZZVZf_Za vPU = 3.0
R D '’ '
s = Npyof* = 0.0073 cm™
% = Np, ol + Ny,0* = 0.0084 cm™?
Str = Npyof* + NygZh® = 0.1041 cm™?
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. Whatis theradius given that N,,, = 3.95 x 10%! at/cm® and Ny, =
2.39 x 1022 at/cm3?
2 —
(Z) S Za, vPu =30
R D
X =0.0073cm™,  X,=0.0084cm™', X, =0.1041cm™!

D = 3.2027 cm

T 33,

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA




Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is theradius given that Np,, = 3.95 x 10%! at/cm?® and Ny, =
2.39 x 1022 at/cm3?

(n)z Vi — 2,
B D
(3.0 i) (0.0073 cm~1) — (0.0084cm™1)

fis
3.2027 cm
B2 = 0.0042 cm™?

B2 =
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and
Na. What is the radius given that Ny, = 3.95 x 10%! at/cm’ and Ny, =
2.39 x 1022 at/cm3?

(n)Z—BZ::»R"—n— T
R " Bn  V0.0042 cm-2
R =485 cm
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Spherical Fast Reactor Assembly

A bare spherical critical assembly is made by a mixture of 22Pu and

Na. Whatis theradius given that N, = 3.95 x 10%! at/cm® and Ny,
2.39 x 1022 at/cm3?

Remember that R is the extrapolated radius
R=R—-2D=485cm —2%3.2027cm
R =42.1cm

Thisisn't entirely negligible for this reactor!

Berkeley

DT LKCIL NE150/215M - Discussion- lan Kolaja



Spherical Fast Reactor Assembly

What is the probability a fission neutronis absorbed in this
assembly?
D = 3.2027 cm, >, = 0.0084cm™1, B2 = 0.0042 cm™?2
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Spherical Fast Reactor Assembly

What is the probability a fission neutronis absorbed in this
assembly?

D = 3.2027 c¢m, %, = 0.0084 cm™1, BZ = 0.0042 cm™*

A neutronis either absorbed in the assembly, or it leaks out. We can
calculate the leakage probability.

1
Pipsorvea = 1 — Pleakage = Py, = 1 + [2B2
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Spherical Fast Reactor Assembly

What is the probability a fission neutronis absorbed in this
assembly?

D = 3.2027 c¢m, %, = 0.0084 cm™1, BZ = 0.0042 cm™*

A neutron s eitherabsorbed in the assembly, or it leaks out. We can
calculate the leakage probability.
1
Pabsorbea =1 — Pleakage = Py = 1 + [2B2

, D 3.2027 cm 5
Lc = Z_a = 00084 et 381.27 cm
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Spherical Fast Reactor Assembly

What is the probability a fission neutronis absorbed in this
assembly?
D = 3.2027 cm, >, = 0.0084cm™1, B2 = 0.0042 cm™?2
L? = 381.27 cm?

1 1

p,, = = — 38.449% absorbed
NL = 71712B2 ~ 1 + 381.27(0.0042 cm=2) %o absorbe

= Pleakage — 1 — Pabsorbed — 6156% leaked

Areflector could be helpful.
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Reflected Critical Slab Criticality Condition

Determine the criticality condition for areflected critical slab.

A

Reflector Reflector

Corg

v

-a/2 a/2
-(a/2+b) (a/2+b)
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Reflected Critical Slab Criticality Condition

Inlecture, we said the criticality condition was:
a D, b
B, D, tan (B,f1 E) = L_r coth (ﬁ)

But how did we get it? Let’s take a closer look, since you need to do
it for the homework.
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Reflected Critical Slab Criticality Condition

The fluxin the core can be shown to have the following shape after
using symmetry:
¢.(x) = C, cos(B,,,x)

The fluxin the reflectorregion can be shown to have following
shape using vacuum boundary conditions:

%+E—x
¢,.(x) = C, sinh T

r
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Reflected Critical Slab Criticality Condition

We then use theinterface boundary condition:

bcore (g) = Qref (g) Jeore (%l) = Jrer (;)
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Reflected Critical Slab Criticality Condition

We then use the interface boundary condition:

Gcore (g) — ¢ref (g) Jeore (%l) — ]ref (;)

a + 1
a 5+b—5
C. cos (Bm E) = (, sinh (2 7 2)
r
b

Beﬂ{de / NE150/215M - Discussion- lan Kolaja

UNIVERSITY OF CALIFORNIA



Reflected Critical Slab Criticality Condition

We then use the interface boundary condition:

Gcore (g) = ¢ref (g) Jeore (izl) = ]ref (g)
a. .z %) D, dp.(x) de,(x)

C. cos (Bm g) = C, sinh (2 dx |x=C§L T dx |x=£zl
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Reflected Critical Slab Criticality Condition

We then use the interface boundary condition:

Gcore (g) — ¢ref (g) Jeore (%) — ]ref (g)

a a, ;L 4o . de,(x) |
Cc COS (Bm _) — CT‘ Sinh 2 2 ¢ dx x:% r dx x:%
: L'r Bna 1 b
C. cos (Bm E) = C, sinh = T )
r
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Reflected Critical Slab Criticality Condition

We can eliminate the constants and get our criticality condition by
dividing our current equation with our flux equation:

Jeore (%) _ Jref (%)
Deore (%) Dref (%l) ]
D.C.B,, sin (%) ) D,C, Li cosh <£)

a - ~
Ce cos (Bng) C. sinh (Lﬁ)
r
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Reflected Critical Slab Criticality Condition

1 b
D.C,B,, sin (—Bga) D CTL_COSh( r)
ay =
con6ed)  Gom(D)
r
Simplifying, we get the criticality condition shownin class:

a D, b
B,,D. tan (Bm E) =7 coth T
r r
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