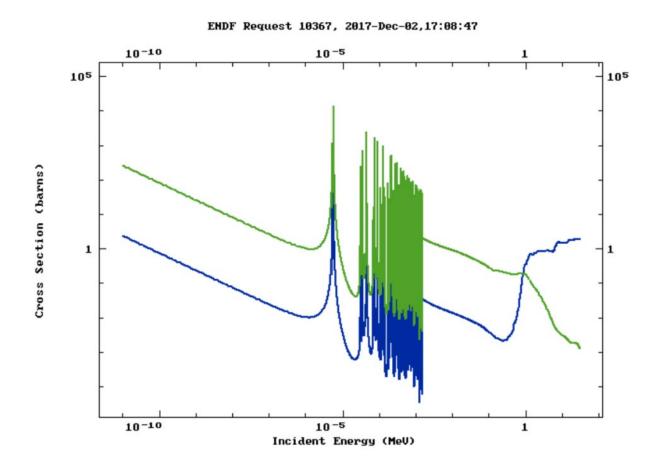
1) Principles of Fission


- a. On average, how much energy is released by a fission reaction in total?
- b. How is this energy distributed among its products?
- c. What are the two ranges of A values for prompt, thermal neutron induced fission products that you expect?
- d. Select two realistic fission products and write a reaction you would expect.
- e. What is the difference between fissile, fissionable, and fertile nuclei?
- f. What is the significance of Pu-239 in reactors? Where does it come from?

- 2) A material has a total microscopic neutron cross section of $2.5\times10^{-24}~cm^2$, and contains 5.20×10^{23} nuclei/cm³
- a) What is the macroscopic cross section?
- b) What is the mean free path of neutrons in this material?
- c) If neutrons impinge perpendicularly on a slab of the material that is 2.0 cm thick, what fraction of them will penetrate the slab without making a collision?
- d) If the neutron beam has an intensity of $7\times 10^7\frac{n}{cm^2s}$, and a cross sectional beam area of 3 cm^2 , how many collisions per second will the neutrons undergo?

- 3) A light water reactor is operating at a steady state power of 1000 MWth. Assume all of the neutrons are thermal.
 - a. Estimate the fission rate of the reactor.
 - b. How many neutrons are being produced from fission per second?
 - c. How many neutrons are either being absorbed or leaking out of the core per second?

4) Free neutrons ($mass=1.67\times 10^{-27}kg$) undergo β^- decay with a half life of 10.4 minutes. Determine the probability that a 5 eV neutron will decay before being absorbed in an infinite, purely-absorbing material with $\Sigma_a=0.022~cm^{-1}$.

5) The (n, f) and (n, γ) reactions are shown below for U-236. Which cross section is which?

- 6) Define the following:
- a. Macroscopic cross section (definition and units)
- b. Fission reactor rate in a homogenous reactor with volume V (definition, formula, units)
- c. Neutron mean free path
- d. Fuel enrichment
- e. Natural abundance

- 7) Scattering
- a. What is the difference between elastic and inelastic scattering?
- b. What does it mean if scattering is isotropic?

8) Say you have a reactor that is a cube with an edge length of 0.8m composed of a homogenous fissile material. The thermal neutron flux is uniform and $1\times 10^{15}~n/cm^2s$. The macroscopic thermal fission cross section is 0.1 cm^{-1} . What is the total reactor power in MW?

- 9) Fermi's Six Factor Formula
- a. Define each term in the six factor formula.
- b. Draw a diagram that shows the possible events that can happen to a neutron in a reactor.
- c. What are two assumptions used in the derivation of the six factor formula?
- d. Write down the four factor formula and state when it is applicable.
- e. What assumptions do you make when you express the multiplication factor as:

$$\frac{\nu \Sigma_f^{fuel} \Sigma_f^{fuel}}{\Sigma_a^{fuel} + \Sigma_a^{other}}$$