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Nuclear Physics and Reactions
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Number Densities
Forisotope with abundance y;

p vie( £X) # atoms
N( ZX) = ayy N ( 3 )
M(7X) cm
For chemical X,,,Y,
NX — mNmen NY — TlNXmYn
mM y

Weight fraction: wy = ———
x y
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Number Densities

- Review first and second homework

- Know how to handle number densities for
molecules, different enrichment

WwipNy
Ntotal — z Ni — Z 11\4
i i y
1

. . Wi
Atomic mass of mixture: — = —
M - M;

l
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Activity

Decay constants and half lives:

In 2
a2 =

Relationship between activity and population:
A(t) = AN(b)

Population over time:
N(t) = Nye
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Types of Reactions

[ Neutron Interaction J

o T

[ Scattering] [Ab sorption]

|Fission Capture - || (n.p)
[ (n,y) ] (n,0)

“NE:150 Spring 2018 Lecture 5: Neutron Interactions with Matter”, J. Vujic

Elastic Inelastic
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Types of Reactions

Reaction Name Notation | Reaction _
Elastic Scattering (n,n) n+ 24X - In+ 42X gc?
Inelastic Scattering (n,n") in+ 84X > (4% ) > In+ 42X +y >§-
Radiative Capture (n,y) in+ 84X - (471x*) > 4t X +y ]
Fission (n, f) in+ 84X > (471%*) > iy + 272 +vin+y .
Charged particle reactions (n,a) n+ 42X - 43V +a B §

(n.p) nt X > 4aY + Ip g
Neutron-producing reaction = (n,2n) n+ 24X - 47y + 2in
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Cross Sections - Definitions

Microscopic Cross Section (o) — A piece of measured data that s
related to the probability that a neutron will interact with atarget
nucleus. It's expressed as an effective area of a target, and
typically measured in barns (1 barn = 10™%*cm?)

Macroscopic Cross Section (2) — Accounts for the number density
of the target nuclei, givenby X = No (¢cm™1). Conceptually, it tells
you the probability per unit length that a neutron will have the
given interaction.
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Interactions and Attenuation

- Mean freepath (x¥) — Theaverage distance a neutron travels
between collisions, given by: x = %

« First collision probability: p(x)dx = Z,e *t*dx
- Probability not interacting within distancex: P(x) = e™>t*
- Probability of at least one collisioninx: P(x)¢ =1 — e™%¢*

 Intensity of beam of uncollided neutrons after penetrating a
distance of x into a material with total cross section:

I(x) = [je™*t*
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Reaction Rates
12C target

- Reaction rates can be calculated ber l
by determining the total number
of collisions between incoming
particles and nuclei per unit time
and unit volume.

- Multiplying by volume gives you
total reaction rate.

- Dimensional analysisis key

0.05 cm

“NE:150 Spring 2018 Lecture 5: Neutron
Interactions with Matter”, J. Vujic
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Reaction Rates

R = nvNo = ®X (# Collisions/cm?)

Quantity | Definition

N Target nuclei number density
n Neutron number density

v Neutron speed

o Microscopic Cross Section

¥ =No | MacroscopicCross Section

¢ =vn Scalar Neutron Flux

Berkeley

Units

nucleus/cm3

neutron/cm3
m/s

cm? /nucleus

1/cm

# neutrons/cm?s
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Fission and Criticality
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F1ssion
i+ 24X - (47X) > Y+ 27 +vin+y

— Typically produces around 200 MeV in total
— Dependson isotope,includes energy from

decays of fission products ST,
. e . . e e . - el e iiém i ﬂ’i"-‘f ﬁ
— Fissile material: Readily undergoes fission with é*%:f;_:e T aﬁwi ety
el et phalie! TR L :
any neutron energy ol gt 5_-:1;;_? : 51!}11;;;1.;;;!1& o
. . . . S Thy DTLabar B Lt b Ui
— Fissionable: Can undergo fission 2’}1;;:11_, HEEA ;i’z;,-*ﬁ 1y
. . 0 . . EH';U‘. 'wrf'! T‘. ;Tf;% 1¥fﬁ:§ 11*;:137* H;tl;;zl
— Fertilematerial: Can become fissile via neutron arslt b TR
capture and decay = oty r ’ﬁ
o/ t
- v,neutron produced from fission, depends on g ;
energy. Typically 2.5 for thermal fission U-235 - -
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Neutron Multiplication Factor

Production rate of neutrons from fission

" loss rate of neutrons from leakage and absorption N
- Subcriticality (k < 1)
- Neutron population & power decrease
- Criticality (k = 1) wo
- Chainreactionis timeindependent
- Desired for reactor operation
- Supercriticality (k > 1)
— Neutron population & powerincrease

/

t

FIGURE 3-2,  Time behavior of the number of reutrons in a reactor.

Beﬂ{ele / NE150/21

Duderstadt, Hamilton 1976
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SiX FaCtOI' FOI'IIlllla TeI'IIlS keff = epfNPpnPraL

Var. | Name

£ Fast fission factor

p | Resonance escape
probability

f | Thermal neutron
utilization factor

n | Thermal neutron
reproduction factor

Py | Fast neutron non-leakage
probability

Pry; | Thermal neutron non-
leakage probability

Berkeley

Definition
The total number of neutrons produced (from both thermal and fast
fissions) divided by just the number of thermal fissions.

The probability that a neutron passes through the resonance region
(see cross section plot) without being absorbed (<1)

The fraction of thermal neutrons that are absorbed in fuel materials over
those absorbed in all materials.

The ratio of neutrons produced by fission over the number of thermal
neutrons absorbed in the fuel.
The probability that a fast neutron does not leak out of the reactor

The probability that a thermal neutron does not leak out of the reactor
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» Fast neutrons @¢————————

= N
do not leak out
leak out
e
slowed absorbed in
down resonances
Prap / \l:)T.\’L L \PFF
absorbed leaked captured  fast ¥
out fission

'

absorbed absorbed 1n
m fuel other matenals
Pe \
v ermal capture
fission
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Fuel Conversion/Breeding

- Fertile materials in the reactor can capture neutrons and decay
into fissile materials.

- Thiscan prolong your reactor operation before refueling

- Breeder reactor designs exploit this to create more fissionable
material than they consume

Production rate of fissile material ~ Absorption in U%38

= -
Consumption rate of fissile material Absorption in U?3>

Called “BreedingRatio, Bif greater than 1.
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Scattering and Neutron Transport
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Elastic Scattering

«  We want toslowdown neutrons because U-235 has a higher
fission cross section at low energies

- Elasticscatteringis the main process for slowing neutrons
(E,Q) - (E',Q)

o;(E—>E') = (10-5_(i§E’

o (L) (A-1Y°
Y RV ES

aF <E'<E
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Elastic Scattering Properties

- Elasticscattering cross sections for light nuclei are nearly
independent of neutron energy up to 1 MeV

- Typical cross sections for scattering range for 2 to 20 barns,
except for water

« Lighter nuclei slow neutrons down faster

- Lowabsorptionis favorable — Hence why heavy water is
useful
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Solid Angle Review

dQl = sin6 dOdd¢

dA
dQ = — 2
r
S~ Q= (u,qp)
\.‘;\-\
/,,
o / s.a/ -

X \///
=23/
X ¢ [
dA

“NE:150 Spring 2018 Lecture 19: Neutron Diffusion Equation — 3”, J. Vujic
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Angular Flux

The path length per unit volume about 7 passed by neutrons with
energiesindEabout E at time't.

1/)(7_", E Q, t) = vn(f’, E Q, t)

neutrons

units: .
cm? - s - MeV - steradian
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Scalar Flux

The number of neutrons penetrating a sphere with across
sectional area of 1cm2at 7, with energies in dE about Eat timet.

o7 E, t) =vn(7, E,t)
o(F E,t) = | @ EQt)dd

21T 4-TI:TL' .
¢(r,E, t) =j dqbf dBsinby (7, E,Q, t)
0 0

neutrons
cm? - s - MeV

units:
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Net Current

Net number of particles crossing a unit area per second alonga
direction normal to that area with energiesin [E, E+dE] at time t.

JFE,¢t) = f QY (7 E,Q, t)dQ
4T

N 2T rTE .
J(#,E,t) =J dng dBsinBcosOyY (7, E,Q, t)
0 0

neutrons
cm? - s - MeV

units:
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