NE150/215M Introduction to Nuclear Reactor Theory Spring 2022

Midterm 1 Review March 1st, 2022

Ian Kolaja

Nuclear Physics and Reactions

Number Densities

For isotope with abundance γ_i

$$N({}_{Z}^{A}X) = \frac{\gamma_{i}\rho({}_{Z}^{A}X)}{M({}_{Z}^{A}X)}N_{A}, \qquad \left(\frac{\#\ atoms}{cm^{3}}\right)$$

For chemical $X_m Y_n$

$$N_X = mN_{X_m y_n} \qquad N_Y = nN_{X_m Y_n}$$

Weight fraction:
$$w_X = \frac{mM_X}{mM_X + nM_Y}$$

Number Densities

- Review first and second homework
- Know how to handle number densities for molecules, different enrichment

$$N_{total} = \sum_{i} N_{i} = \sum_{i} \frac{w_{i} \rho N_{A}}{M_{i}}$$

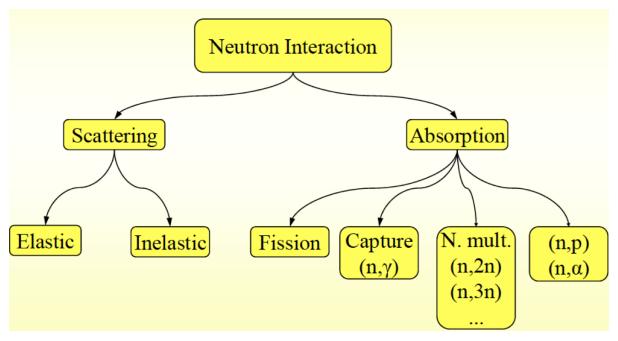
Atomic mass of mixture:
$$\frac{1}{M} = \sum_{i} \frac{w_i}{M_i}$$

Activity

Decay constants and half lives:

$$t_{1/2} = \frac{\ln 2}{\lambda}$$

Relationship between activity and population:


$$A(t) = \lambda N(t)$$

Population over time:

$$N(t) = N_0 e^{-\lambda t}$$

Types of Reactions

"NE:150 Spring 2018 Lecture 5: Neutron Interactions with Matter", J. Vujic

Notation	Reaction
(n,n)	${}_0^1n + {}_Z^AX \rightarrow {}_0^1n + {}_Z^AX$
(n,n')	${}_{0}^{1}n + {}_{Z}^{A}X \rightarrow \left({}_{Z}^{A+1}X^{*} \right) \rightarrow {}_{0}^{1}n + {}_{Z}^{A}X + \gamma$
(n,γ)	${}_{0}^{1}n + {}_{Z}^{A}X \rightarrow \left({}_{Z}^{A+1}X^{*} \right) \rightarrow {}_{Z}^{A+1}X + \gamma$
(n,f)	
(n,α)	${}_0^1n + {}_Z^AX \rightarrow {}_{Z-2}^{A-3}Y + \alpha$
(n,p)	${}_{0}^{1}n + {}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + {}_{1}^{1}p$
(n,2n)	${}_{0}^{1}n + {}_{Z}^{A}X \rightarrow {}_{Z}^{A-1}Y + 2{}_{0}^{1}n$
	(n,n) (n,n') (n,γ) (n,f) (n,α)

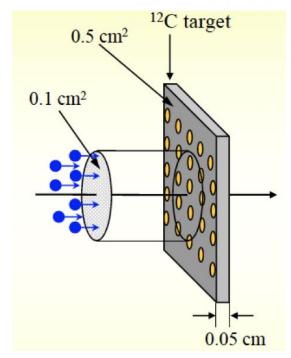
bsorption

Cross Sections - Definitions

Microscopic Cross Section (σ) – A piece of measured data that is related to the probability that a neutron will interact with a target nucleus. It's expressed as an effective area of a target, and typically measured in barns $(1 \ barn = 10^{-24} \ cm^2)$

Macroscopic Cross Section (Σ) – Accounts for the number density of the target nuclei, given by $\Sigma = N\sigma \ (cm^{-1})$. Conceptually, it tells you the probability per unit length that a neutron will have the given interaction.

Interactions and Attenuation


- Mean free path (\bar{x}) The average distance a neutron travels between collisions, given by: $\bar{x} = \frac{1}{\Sigma}$
- First collision probability: $p(x)dx = \sum_t e^{-\sum_t x} dx$
- Probability not interacting within distance x: $P(x) = e^{-\Sigma_t x}$
- Probability of at least one collision in x: $P(x)^C = 1 e^{-\Sigma_t x}$
- Intensity of beam of uncollided neutrons after penetrating a distance of x into a material with total cross section:

$$I(x) = I_0 e^{-\Sigma_t x}$$

Reaction Rates

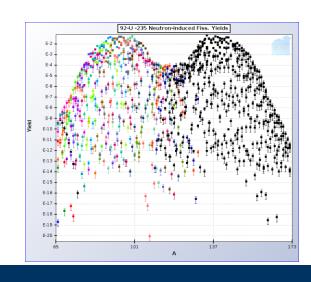
- Reaction rates can be calculated by determining the total number of collisions between incoming particles and nuclei per unit time and unit volume.
- Multiplying by volume gives you total reaction rate.
- Dimensional analysis is key

"NE:150 Spring 2018 Lecture 5: Neutron Interactions with Matter", J. Vujic

Reaction Rates

$$R = nvN\sigma = \Phi\Sigma$$
 (# Collisions/cm³)

Quantity	Definition	Units
N	Target nuclei number density	nucleus/cm³
n	Neutron number density	neutron/cm³
υ	Neutron speed	m/s
σ	Microscopic Cross Section	cm²/nucleus
$\Sigma = N\sigma$	Macroscopic Cross Section	1/cm
$\phi = vn$	Scalar Neutron Flux	# neutrons/cm²s


Fission and Criticality

Fission

$${}_{0}^{1}n + {}_{Z}^{A}X \rightarrow \left({}_{Z}^{A+1}X^{*} \right) \rightarrow {}_{Z1}^{A1}Y + {}_{Z2}^{A2}Z + \nu_{0}^{1}n + \gamma$$

- Typically produces around 200 MeV in total
 - Depends on isotope, includes energy from decays of fission products
- Fissile material: Readily undergoes fission with any neutron energy
- Fissionable: Can undergo fission
- Fertile material: Can become fissile via neutron capture and decay
- ν , neutron produced from fission, depends on energy. Typically 2.5 for thermal fission U-235

Neutron Multiplication Factor

 $k = \frac{Production \ rate \ of \ neutrons \ from \ fission}{loss \ rate \ of \ neutrons \ from \ leakage \ and \ absorption}$

- Subcriticality (k < 1)
 - Neutron population & power decrease
- Criticality (k = 1)
 - Chain reaction is time independent
 - Desired for reactor operation
- Supercriticality (k > 1)
 - Neutron population & power increase

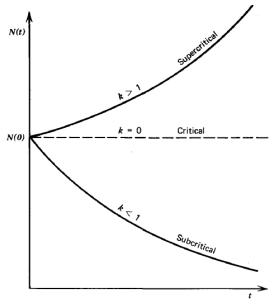
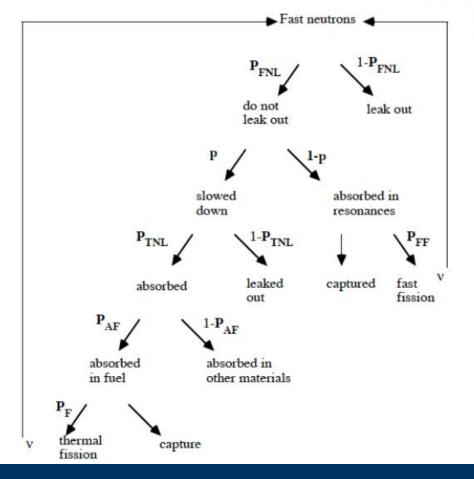


FIGURE 3-2. Time behavior of the number of neutrons in a reactor.


Duderstadt, Hamilton 1976

Six Factor Formula Terms $k_{eff} = \epsilon p f \eta P_{FNL} P_{TNL}$

Var.	Name	Definition
ε	Fast fission factor	The total number of neutrons produced (from both thermal and fast fissions) divided by just the number of thermal fissions.
р	Resonance escape probability	The probability that a neutron passes through the resonance region (see cross section plot) without being absorbed (<1)
f	Thermal neutron utilization factor	The fraction of thermal neutrons that are absorbed in fuel materials over those absorbed in all materials.
η	Thermal neutron reproduction factor	The ratio of neutrons produced by fission over the number of thermal neutrons absorbed in the fuel.
P_{FNL}	Fast neutron non-leakage probability	The probability that a fast neutron does not leak out of the reactor
P_{TNL}	Thermal neutron non- leakage probability	The probability that a thermal neutron does not leak out of the reactor

Fuel Conversion/Breeding

- Fertile materials in the reactor can capture neutrons and decay into fissile materials.
- This can prolong your reactor operation before refueling
- Breeder reactor designs exploit this to create more fissionable material than they consume

$$C = \frac{Production\ rate\ of\ fissile\ material}{Consumption\ rate\ of\ fissile\ material} \rightarrow \frac{Absorption\ in\ U^{238}}{Absorption\ in\ U^{235}}$$

Called "Breeding Ratio, Bif greater than 1.

Scattering and Neutron Transport

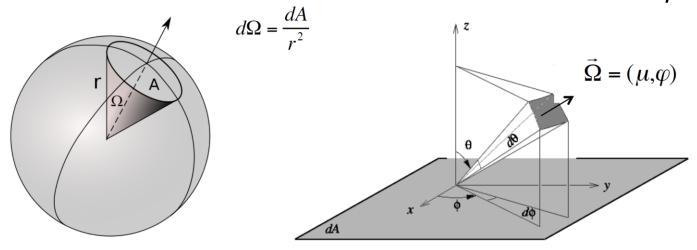
Elastic Scattering

- We want to slow down neutrons because U-235 has a higher fission cross section at low energies
- Elastic scattering is the main process for slowing neutrons $(E,\Omega) \rightarrow (E',\Omega')$

$$\sigma_{S}(E \to E') = \frac{\sigma_{S}(E)}{(1-\alpha)E}, \qquad \alpha E \le E' \le E$$

$$\bar{E}' = \left(\frac{1+\alpha}{2}\right)E, \qquad \alpha = \left(\frac{A-1}{A+1}\right)^{2}$$




Elastic Scattering Properties

- Elastic scattering cross sections for light nuclei are nearly independent of neutron energy up to 1 MeV
- Typical cross sections for scattering range for 2 to 20 barns, except for water
- Lighter nuclei slow neutrons down faster
- Low absorption is favorable Hence why heavy water is useful

Solid Angle Review

"NE:150 Spring 2018 Lecture 19: Neutron Diffusion Equation – 3", J. Vujic

Angular Flux

The path length per unit volume about \vec{r} passed by neutrons with energies in dE about E at time t.

$$\psi(\vec{r}, E, \widehat{\Omega}, t) \equiv vn(\vec{r}, E, \widehat{\Omega}, t)$$

units:
$$\frac{\text{neutrons}}{\text{cm}^2 \cdot \text{s} \cdot \text{MeV} \cdot \text{steradian}}$$

Scalar Flux

The number of neutrons penetrating a sphere with a cross sectional area of 1 cm² at \vec{r} , with energies in dE about E at time t.

$$\phi(\vec{r}, E, t) \equiv vn(\vec{r}, E, t)$$

$$\phi(\vec{r}, E, t) = \int_{4\pi} \psi(\vec{r}, E, \widehat{\Omega}, t) d\widehat{\Omega}$$

$$\phi(\vec{r}, E, t) = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta sin\theta \psi(\vec{r}, E, \widehat{\Omega}, t)$$

$$units: \frac{\text{neutrons}}{\text{cm}^{2} \cdot \text{s} \cdot \text{MeV}}$$

Net Current

Net number of particles crossing a unit area per second along a **direction normal** to that area with energies in [E, E+dE] at time t.

$$\vec{J}(\vec{r}, E, t) = \int_{4\pi} \widehat{\Omega} \psi(\vec{r}, E, \widehat{\Omega}, t) d\widehat{\Omega}$$

$$\vec{J}(\vec{r}, E, t) = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin\theta \cos\theta \psi(\vec{r}, E, \widehat{\Omega}, t)$$

units:
$$\frac{\text{neutrons}}{\text{cm}^2 \cdot \text{s} \cdot \text{MeV}}$$

