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Neutron Transport Equation
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Fick’s First Law

- Statement that flux of diffusing
species goes from regions of high
concentrationtoregions of low
concentration, proportional to "t pes ° s o4
concentration gradient. % {: P _ oo

J =—DV¢
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Math Review: Gradient

Let f be a scalar-valued, differentiable function f of several variables (x4, ... x,).
The gradient Vf at point p is the vector whose partial derivatives are given as

below:
f
o, (p)
Vi(p) = af:
x, (P)_
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Diffusion Equation (Monoenergetic)

19¢(7,t R e N
- qb(gt ) =S(rt) —X,(r)op(t) +V-D(@)Vep(r,t)
Rateof Change Source  Absorption Leakage

With one neutron energy.

n
#(, 1),  Scalar Flux (—)

D(r), Diffusion Coefficient, (cm)

H#
Sext(T, 1), Independent source of neutrons (cm3 s)
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Diffusion Equation (Simplified)
0=S{) —Z,¢() +DV*p(7)

Rateof Change Source  Absorption Leakage

Steady state, with one neutron energy, uniform.

Diffusion Length: L% = 22 [cm?]

1 Ay _
D = TR Yo = 2.(1 = f1), where u = cos 6
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Math Review: Laplace operator

The Laplacian is the divergence of the gradient of a scalar function. Intuitively,
the Laplacian Af (p) of a function f at point p tells you how much the average
value of f over small spheres centered at p deviates from f(p)

n

52
V.V f =V2f = div(grad(f)) =Af=26 !
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Math Review: Laplace operator

Geometry A = V2 = (General) A =V?= (1D)
62 62 02 az
Cartesian -
ax2 " dy? T 92
Cylindrical 190,09 + 1 0 + 0° 10 9
y ror or 12 dp?  0z? ror or
19 ,0 1 0 d 1 0 19 ,0
Spherical 2 ' 2
P r2or 6r+r2 sin 8 06 Sm060+r2 sin? 0 d¢? r2or  or
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Diffusion Equation Assumptions

Assumption 1) Scattering is isotropic in the LAB

coordinate system

1 Aer _
=33 Yo = 2(1 — 1), where u = cos 6

Assumption 2) The scattering cross section is much
higher than the absorption
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Diffusion Equation Assumptions

Assumption 3) The medium is infinite

Assumption 4) Flux varies slowly with position
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Diffusion Equation Applicability

The assumptions that go into the diffusion equation
arevalid when the solutionis not:

1. Near avoid

2. Near a boundary where material properties
change rapidly

3. Nearalocalized source
4. Ina strong absorber
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Boundary Conditions

1) Initial Condition
Specifies the neutron flux for all positions at the initial

time
2) Finite Flux

For flux to physically make sense, it must be real, non-
negative, and finite. (Away from localized sources)

0<¢p(rt) <
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Boundary Conditions

3) Vacuum s 3
Neutrons cannot enter the 5 2
reactor from the outside; thus, N i
inward directed partial current A 3
vanishes at reactor boundary

d_"~d
Ddcp S
] (x,) = —qb(x ) + x, =0, o1 medium [vacum |
d(X;) =0, where xS = xS + 2D X X
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Boundary Conditions

4) Interface

The flux and normal component of the current are
continuous at an interface 7, between two
different materials.

¢1(7_ﬂ:s't) — ¢2(7:)S't)1 ]1(7:)311:) :]2(7:)511:)
—D;Vg, (7_";) = —D, Vo, (7_";)
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4) Interface
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T2l 13 ;
“Boundary Conditions — Diffusion 12 > I2 = steeper slope of ¢(x)
Equation”, nuclear-power.com T zsz = L%
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Boundary Conditions

5) Source

All of the neutrons flowing through the bounding
areaof a neutron source have to come fromiit.

S(xy) = xlgyrclo ] ?.dS (General)
S
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Boundary Conditions

5) Source

Planar Source: lirré J(x) =
X—

Point Source: lirr(1) Anr?](r) =S
Tr—

Line Source: ling 2nr](r) =S
Tr—
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Non-Multiplying Media Problems

No neutrons from fission
Known neutron source

2
_p? dd;(zx) +3,0(x) = S7 1)
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Multiplying Medium Problems

Neutrons come from fission
No external source
Homogenous equation
S, t) =vi(F)e (7, t)
The diffusion equation becomes:

d*¢(x)

—D T2 +2,0(x) = vied(x)

ﬁgﬁ}:l}igl@y NE150/215M - Discussion- lan Kolaja



Separation of Variables

- Assuming the shape of the flux largely depends on
the geometry

- Truewhenreactor conditions are relatively stable
— Doesn’tapplytorapid changesinreactor power

d(x,t) = P(x)T(t)
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Math Review: Eigenvalue Equations

- Aneigenfunction of an operator His afunction fthat
satisfies the following, where cis an eigenvalue:

Hf =cf
For our application:
H=V?  f=¢, c = B
p

d2¢ VZf—Za‘I'_a

Tz 5 Y p(x) = B2¢p(x)
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Eigenvalue Problems

Infinitely many functions satisfy this
d’
dx?
- Weshowed that we canignore the higher order
partial solutions because they go to zero very quickly
- We arelooking for the fundamental mode

d(x,t) - >A e *1tcos(Byx)

+ B¢, (x) =0, forn=1,23..
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Buckling and Criticality Condition

Material buckling describes the neutron production
and absorption of an infinite fuel material

Geometric buckling describes the neutron leakage
If the systemis critical,itis in steady state: 1, =0
- Thecriticality condition is such that they are equal:

B, = B; (for bare systems)
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Material Buckling

Considers only the material properties in aninfinite

medium (recall the two factor formula)

(2>
koo = =2
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Geometric Buckling and Flux Shapes

Geometry Dimensions | Buckling, B Flux Shape, ¢
Infinite Slab a T 2 T
(E) Acos(&x)
Parallelepiped a,b,c m2  (M\%  m\>2 E (E ) m
» D) (E) +(E) +(E) Acos(ax) cos( ¥ cos(gz)
Infini i 2 2.4
nfinite Cylinder | R 2_4~05> A]o( ~05r)
R R
FiniteCylinder | R,H 2405\% /m\2 2.405 s
<_~ +(:> Al —1 | cOS (: z)
R H R H
2
Sphere R (Z) A1 sin (7—E r)
R r R
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Other Diffusion Equation Tips

Calculating the power can allow you to solve for your
final constant once you have the flux shape

- Youcan also use separation of variables for different
spatial dimensions ¢(x,y,z) = X(x)Y(y)Z(2)
- Thedependence of B on k, allows you to use the

two factor formula, which can include multiple
isotopes
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Math Review: Bessel Functions

Thesolutions to the following
differential equation are known as
Bessel functions J,,(x) and Y,,(x)
2
x2%+x%+(x2 —n?)f=0 |
Describes things like vibrationsin -«
drums, dynamics of floating bodies,

and flux in cylindrical reactors
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Math Review: Bessel Functions

- With the diffusion equation, these usually appearin
the general solution of cylindrical geometries

- Theyalso have higher order mode solutions
—~ Weonlycareaboutn =0

1d do,(r)
rdrr dr

= ¢, = C1/o(B,1) + CYo(B,1)

+ Br%gbn(r) =0
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Math Review: Bessel Functions
J.(x), FirstKind Yn(x), Second Kind

1.0 Jo™) 0.5
J(x) ==== I / \ R L™ o 1
. l ’ S v/ * '~ ;\’-_." -_:
\ i / [ \b)(){—-’ - .
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Notice where the functions are negative
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Math Review: Bessel Functlons

- Evaluate numerically N o
(Wolfram alpha) st 7 *
- You may see 2.405 ol m :
written as v, 0 s
d A L N O
d_ [xm]m(x)] — xm]m—l(x) o4 Tolv) i |
X y -06-/ : :
| whed =
0 — x, = 2.405 *
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Reflectors

- Areflectorisanon-multiplying layer around a
reactor core that scatters neutrons back in

— Reduces neutron leakage

- Materials like graphite, beryllium, steel
— Low absorption
— High elastic scattering

— Inthermalreactors, lower A desired
for better moderation
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Reflector Effects

- Reduces critical size of active core (or enrichment)

. — pb reflected

Reflector Savings = RE%e.o — RLchect

- Reduces power peaking factor (or max-to-average flux ratio)
¢
PPF = quax, where ¢ 0 = v odV
avg V
- Increases neutron fluxin [Refecr Core Reflector
core near the boundary N L~
/ M 0N — With
,f - \\ - | Reflector
ff‘f A\
Without
/ Reflector AN
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Reflectors and the Diffusion Equation

Reflectors create additional regions you must solve
separately for

— Interface boundary condition should be used
— Reflectors aren’t multiplying so no source
- B2 # BZ nolonger applies, so finding the criticality
condition takes extrawork
]core (R) ]reflector (R)

(pcore (R) ¢reflector (R)

(from interface)
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Diffusion Equation Problem Strategy

1. Start with the general equation and simplify, applying
correct Laplacian for geometry

2. Write the corresponding general solution for each region

3. Eliminate termsthat become negative, infinite, or
violate symmetry within your geometry

4. Applyboundary conditions
5. Determine critical condition (bare vs reflected)
6. Integrate power density to get magnitude of flux shape
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Energy Dependence
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Energy Equation Dependent Diffusion

So far, we've considered neutrons at one energy

In reality, neutrons are born fast and scatter down to
thermal energies, with many neutrons in between

If we split the energy spectrum in multiple groups, we
can get a better model of flux.

Group g
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Multlgroup lefusmn Equation

g'=1 g'=1

Constants

Yrg Ztor,g = Fission, total cross section for group g
X 4/ g = Scattering cross section from group g to g’
v, = Neutrons produced per fission for group g

Xg = The fraction of fission neutrons emitted in group g
D, = Diffusion coefficient for group g
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Two Group Diffusion

- We'reonly considering fast and thermal neutrons
- All fission neutrons are born into the fast group
- There'’s no up-scattering from thermal group to fast group

Thermal group Fast group

A A

E,=0eV E, = leV E, = 10MeV
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Two Group Diffusion
To solve for k, you can solve the system of equations:
b2 b1

— z:S,1—>2
B?D, + a2

Substitutein ¢,

2 1 2:S,1—>2
DBy +2Ep 101 = 2 V1Zr 101 + VoXs o B2D, + 3., ¢4
a,

Cancelout ¢,, and solve for k:
_ Vi2f 1 + L5 1-2V225 2
DiB? +ZXp; (D1B? +ZXg1)(D;B* +%,,)
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Multigroup Matrix Form

For more than 2 groups, it’s helpful to write the
multigroup equation in matrix form

M captures your diffusion, scattering, and removal
terms

F captures your fission terms
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E,
- You may be given
assumptions about Ee

E—l

Multigroup Coupling @
A\ |

which groups can scatter va
towhich groups L . e

- Usually, thermal —: . E E
neutrons can upscatter
tootherthermal groups, _/ , . .
but fast neutrons can’t  welos ey N

UNIVERSITY OF CALIFORNIA
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Example: Five-group Diffusion Equation

Suppose you have a slab reactor with uniform material properties.
Derive the five-group diffusion equation in matrix form assuming:

- There are 2 fast groups and 3 thermal groups

«  Theupper two groups have a fission source

- Thereisdirect coupling between the fast groups
- Upscatteringis allowed for the thermal groups

« Direct coupling applies to both downscattering and upscattering
in the thermal groups
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Example: Five-group Diffusion Equations

d2

_Dl W + ZR,l

_Zs,l—>2

M = 0

0

0

0
d2
—D2 W + ZR,Z
_25,2—>3

0

0

(X1VIf1
X2Vifq
F=1 0
0
0

Berkeley

UNIVERSITY OF CALIFORNIA

X1VEf
X2V 2
0
0
0

X1VEf3
X2Vif3
0
0
0

X1VEf 4]
X2Vif 4
0
0

0

0

0
2

—D5 W + ZR,3

_25,3—>4

0

[¢1(x)]
¢2(x)
¢3(x)
¢4(x)

0

0

_25,4—>3
d2
_D4 E + ZR,4-

_25,4—>5

L5 (x)]
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Example: Five-group Diffusion Equations

d2
—D1 W + ZR,l

_Zs,l—>2

M = 0

0

0

F=] 0 0
0 0
0 0

Berkeley

—D2 W + ZR,Z

_25,2—>3

0
0
0

0

d2

0

0

0
0
0

0

0
2

—D3 W + ZR,3

_25,3—>4

0

$3()
¢4(x)
¢s(x)

0

0

_25,4—>3
d2
_D4 E + ZR,4-

_25,4—>5

0
0

0

_25,5—>4
dZ

—D5 W + ZR’5_

" What if direct coupling doesn’t apply to downscattering?

AZY=], L AZY=],Z AZ'=],3 AZ'=]4
y ¢=
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Example: Five-group Diffusion Equations

d2
—Ds dxZ +2p1 0 0 0 0
d2
—25’1%2 —D2 W + ZR,Z 0 0 O
2
M= —X5,13 —X5253 —D3 dx? + 2R3 —X5,43 0
d2
—Xs5,14 —X52-54 —X5354 —D, dx2 + 2ZRa —Xg,5-4
dZ
—X5,1-5 —X5255 —X5355 —X5,455 —Ds o7 + Zrs)
What if direct coupling doesn’t apply to downscattering?
AZY=], L AZY=],Z AZ'=],3 AZ'=]4 -
F=1 o 0 0 0o | ¢=|e@ M¢:—£¢
0 0 0 0 $a(x) — L k —
0 0 0 0 ¢s(x)

Berkeley

UNIVERSITY OF CALIFORNIA
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Delayed Neutrons

Some fission fragments will emit neutrons when they decay
— We call them delayed neutron precursors
« Thismust beaccounted forin our neutron balances

- These decays happen at different timescales, so we typically
group them together

— 6 groups of precursors is standard
— JA;isthedecay constant of group i
— p;isthefraction of all neutrons that come fromgroup i
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Delayed Neutron Groups for Thermal
Fission in U-235

Group Half-life (s) Decay Constant (s) B;
1 55.72 0.0124 0.000215
2 22.72 0.0305 0.001424
3 6.22 0.111 0.001274
4 2.30 0.301 0.002568
5 0.610 1.14 0.000748
6 0.230 3.01 0.000273

J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 2nd Edition, 1983, page 76.
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Time Dependence
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Reactivity

Reactivity measures deviation of k- from 1.

keff - 1

p= N

Kers

Technically unitless, but its commonly expressed in units of pcm
(percent mile) by multiplying by 10°. We won’t be using pcm for
today’s discussion.
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Reactivity in Dollars

It can also help to express your reactivity relative to your delayed
neutron response. We express reactivity in dollars or cents.

reactivity in dollars = %
100p
B

Example: If you 50 cents of reactivity, that means p = /2

reactivity in cents =
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Reactivity and Delayed Neutrons

Therelationship between inserted reactivity and delayed
neutrons dictates whether a reactor can be controlled

- If0 < p < B, thereactoris delayed critical and
controllable since its time response depends on delayed
neutrons

- |If p = B, thereactorisatatipping point; it transitions
between being supercritical on prompt neutrons instead
of delayed neutrons

- Ifp > B, thereactoris super critical from prompt neutrons
and cannot be controlled.
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Point Reactor Kinetics Equation

6
dP p(t)—p
— =L rn+ Zajcj(t)
Jj=1
dC; B
] _ ] 1.7, ;
= P(t) - A,C(t), j=1,..,6
If reactivity does not depend on time, then you can write:
’ p(t) = po
1
A = — = mean neutron generation time, where £ = Py; ——
k X,V
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