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Fick’s First Law

- Statement that flux of diffusing 
species goes from regions of high 
concentration to regions of low 
concentration, proportional to 
concentration gradient.

Ԧ𝐽 = −𝐷∇𝜙
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Math Review: Gradient
Let f be a scalar-valued, differentiable function 𝑓 of several variables (𝑥1, … 𝑥𝑛). 
The gradient ∇𝑓 at point p is the vector whose partial derivatives are given as 
below:

∇𝑓 𝑝 =

𝜕𝑓

𝜕𝑥1
(𝑝)

⋮
𝜕𝑓

𝜕𝑥𝑛
(𝑝)
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Diffusion Equation (Monoenergetic)

1

𝑣

𝜕𝜙(Ԧ𝑟, 𝑡)

𝜕𝑡
= 𝑆 Ԧ𝑟, 𝑡 − Σ𝑎 Ԧ𝑟 𝜙 Ԧ𝑟, 𝑡 + ∇ ∙ 𝐷 Ԧ𝑟 ∇𝜙 Ԧ𝑟, 𝑡

Rate of Change      Source Absorption Leakage

With one neutron energy.

𝜙 Ԧ𝑟, 𝑡 , Scalar Flux
n

cm2s
𝐷 Ԧ𝑟 , Diffusion Coefficient, cm

𝑆𝑒𝑥𝑡 Ԧ𝑟, 𝑡 , Independent source of neutrons
#

cm3s
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Diffusion Equation (Simplified)

0 = 𝑆 Ԧ𝑟 − Σ𝑎𝜙 Ԧ𝑟 + 𝐷∇2𝜙 Ԧ𝑟
Rate of Change      Source Absorption Leakage

Steady state, with one neutron energy, uniform.

Diffusion Length: 𝐿2 =
𝐷

Σ𝑎
[𝑐𝑚2]

𝐷 =
1

3Σ𝑡𝑟
=
𝜆𝑡𝑟
3
, Σ𝑡𝑟 = Σ𝑠 1 − ҧ𝜇 , 𝑤ℎ𝑒𝑟𝑒 𝜇 = cos 𝜃
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Math Review: Laplace operator
The Laplacian is the divergence of the gradient of a scalar function. Intuitively, 
the Laplacian Δ𝑓(𝑝) of a function 𝑓 at point p tells you how much the average 
value of 𝑓 over small spheres centered at p deviates from 𝑓(𝑝)

∇ ∙ ∇ 𝑓 = ∇2𝑓 = div(grad f ) = Δf =෍

𝑖=1

𝑛
𝜕2𝑓

𝜕𝑥𝑖
2
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Math Review: Laplace operator
Geometry Δ = ∇2 = (General) Δ = ∇2 = (1D)

Cartesian
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
𝜕2

𝜕𝑥2

Cylindrical
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜑2 +
𝜕2

𝜕𝑧2
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕

𝜕𝑟

Spherical
1

𝑟2
𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
+

1

𝑟2 sin2 𝜃

𝜕2

𝜕𝜑2

1

𝑟2
𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
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Diffusion Equation Assumptions

Assumption 1) Scattering is isotropic in the LAB 
coordinate system

𝐷 =
1

3Σ𝑡𝑟
=
𝜆𝑡𝑟
3
, Σ𝑡𝑟 = Σ𝑠 1 − ҧ𝜇 , 𝑤ℎ𝑒𝑟𝑒 𝜇 = cos 𝜃

Assumption 2) The scattering cross section is much 
higher than the absorption
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Diffusion Equation Assumptions

Assumption 3) The medium is infinite

Assumption 4) Flux varies slowly with position
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Diffusion Equation Applicability

The assumptions that go into the diffusion equation 
are valid when the solution is not:
1. Near a void
2. Near a boundary where material properties 

change rapidly
3. Near a localized source
4. In a strong absorber
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Boundary Conditions

1) Initial Condition
Specifies the neutron flux for all positions at the initial 
time
𝜙 Ԧ𝑟, 𝑡 = 0 = 𝜙0 Ԧ𝑟

2) Finite Flux
For flux to physically make sense, it must be real, non-
negative, and finite. (Away from localized sources)
0 ≤ 𝜙(Ԧ𝑟, 𝑡) < ∞
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Boundary Conditions

3) Vacuum 
Neutrons cannot enter the 
reactor from the outside; thus, 
inward directed partial current 
vanishes at reactor boundary

𝐽− 𝑥𝑠 =
1

4
𝜙 𝑥𝑠 +

𝐷

2

𝑑𝜙

𝑑𝑥
│𝑥𝑠

= 0, 𝑜𝑟

𝜙 ෤𝑥𝑠 = 0, 𝑤ℎ𝑒𝑟𝑒 ෤𝑥𝑠 = 𝑥𝑠 + 2𝐷 𝑥𝑠 ෤𝑥𝑠
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Boundary Conditions

4) Interface
The flux and normal component of the current are 
continuous at an interface Ԧ𝑟s between two 
different materials.

𝜙1 Ԧ𝑟s, 𝑡 = 𝜙2 Ԧ𝑟s, 𝑡 , 𝐽1 Ԧ𝑟s, 𝑡 = 𝐽2(Ԧ𝑟s, 𝑡)

−𝐷1∇𝜙1(Ԧ𝑟s) = −𝐷2∇𝜙2(Ԧ𝑟s)
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Boundary Conditions

4) Interface

“Boundary Conditions – Diffusion 

Equation”, nuclear-power.com
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Boundary Conditions

5) Source
All of the neutrons flowing through the bounding 
area of a neutron source have to come from it.

𝑆 𝑥0 = lim
𝑥→𝑥0

න
𝑠

Ԧ𝐽 ∙ ෠ℓ𝑠𝑑𝑆 𝐺𝑒𝑛𝑒𝑟𝑎𝑙
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Boundary Conditions

5) Source

Planar Source: lim
𝑥→0

𝐽 𝑥 =
𝑆

2

Point Source: lim
𝑟→0

4𝜋𝑟2𝐽 𝑟 = 𝑆

Line Source: lim
𝑟→0

2𝜋𝑟𝐽 𝑟 = 𝑆
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Non-Multiplying Media Problems

• No neutrons from fission
• Known neutron source

−𝐷
𝑑2𝜙 𝑥

𝑑𝑥2
+ Σ𝑎𝜙 𝑥 = 𝑆(Ԧ𝑟, 𝑡)
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Multiplying Medium Problems

• Neutrons come from fission
• No external source
• Homogenous equation

𝑆 Ԧ𝑟, 𝑡 = 𝜈Σ𝑓 Ԧ𝑟 𝜙(Ԧ𝑟, 𝑡)

The diffusion equation becomes:

−𝐷
𝑑2𝜙 𝑥

𝑑𝑥2
+ Σ𝑎𝜙 𝑥 = 𝜈Σ𝑓𝜙(𝑥)
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Separation of Variables

• Assuming the shape of the flux largely depends on 
the geometry

• True when reactor conditions are relatively stable
– Doesn’t apply to rapid changes in reactor power

𝜙 𝑥, 𝑡 = Φ(𝑥)𝑇(𝑡)
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Math Review: Eigenvalue Equations

• An eigenfunction of an operator H is a function f that 
satisfies the following, where c is an eigenvalue:

𝐻𝑓 = 𝑐𝑓

For our application:
𝐻 = ∇2, 𝑓 = 𝜙, 𝑐 = 𝐵𝑛

2

𝑑2𝜙

𝑑𝑥2
= −

ҧ𝜈Σ𝑓 − Σa +
𝜆𝑎
𝑣

𝐷
𝜙 𝑥 = 𝐵𝑛

2𝜙(𝑥)
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Eigenvalue Problems

• Infinitely many functions satisfy this
𝑑2𝜙𝑛

𝑑𝑥𝑛
2 + 𝐵𝑛

2𝜙𝑛 𝑥 = 0, 𝑓𝑜𝑟 𝑛 = 1,2,3…

• We showed that we can ignore the higher order 
partial solutions because they go to zero very quickly

• We are looking for the fundamental mode
𝜙 𝑥, 𝑡

𝑡→∞
𝐴1𝑒

−𝜆1𝑡cos(𝐵0𝑥)
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Buckling and Criticality Condition

• Material buckling describes the neutron production 
and absorption of an infinite fuel material

• Geometric buckling describes the neutron leakage
• If the system is critical, it is in steady state: 𝜆1 = 0

• The criticality condition is such that they are equal:

𝐵𝑚
2 = 𝐵𝑔

2 (for bare systems)
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Material Buckling

• Considers only the material properties in an infinite 
medium (recall the two factor formula)

𝑘∞ =
𝑣Σ𝑓

Σ𝑎

𝐵𝑚
2 =

𝑘∞ − 1

𝐿2
=
𝜈Σ𝑓 − Σ𝑎

𝐷
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Geometric Buckling and Flux Shapes
Geometry Dimensions Buckling, 𝐵𝑔2 Flux Shape, 𝜙

Infinite Slab a 𝜋

෤𝑎

2
𝐴 cos

𝜋

෤𝑎
𝑥

Parallelepiped a, b, c 𝜋

෤𝑎

2

+
𝜋

෨𝑏

2

+
𝜋

ǁ𝑐

2
𝐴 cos

𝜋

෤𝑎
𝑥 cos

𝜋

෨𝑏
𝑦 cos

𝜋

ǁ𝑐
𝑧

Infinite Cylinder R 2.405

෨𝑅

2

𝐴𝐽0
2.405

෨𝑅
𝑟

Finite Cylinder R, H 2.405

෨𝑅

2

+
𝜋

෩𝐻

2
𝐴𝐽0

2.405

෨𝑅
𝑟 cos

𝜋

෩𝐻
𝑧

Sphere R 𝜋

෨𝑅

2

𝐴
1

𝑟
sin

𝜋

෨𝑅
𝑟
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Other Diffusion Equation Tips

• Calculating the power can allow you to solve for your 
final constant once you have the flux shape

• You can also use separation of variables for different 
spatial dimensions 𝜙 𝑥, 𝑦, 𝑧 = 𝑋 𝑥 𝑌 𝑦 𝑍(𝑧)

• The dependence of 𝐵𝑚2 on 𝑘∞ allows you to use the 
two factor formula, which can include multiple 
isotopes 
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Math Review: Bessel Functions

The solutions to the following 
differential equation are known as 
Bessel functions 𝐽𝑛(𝑥) and 𝑌𝑛(𝑥)

𝑥2
𝑑2𝑓

𝑑𝑥2
+ 𝑥

𝑑𝑓

𝑑𝑥
+ 𝑥2 − 𝑛2 𝑓 = 0

Describes things like vibrations in 
drums, dynamics of floating bodies, 
and flux in cylindrical reactors
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Math Review: Bessel Functions
• With the diffusion equation, these usually appear in 

the general solution of cylindrical geometries
• They also have higher order mode solutions

– We only care about 𝑛 = 0

1

𝑟

𝑑

𝑑𝑟
𝑟
𝑑𝜙𝑛(𝑟)

𝑑𝑟
+ 𝐵𝑛

2𝜙𝑛(𝑟) = 0

⇒ 𝜙𝑛 = 𝐶1𝐽0 𝐵𝑛𝑟 + 𝐶2𝑌0(𝐵𝑛𝑟)



NE150/215M - Discussion- Ian Kolaja

Math Review: Bessel Functions
𝐽𝑛 𝑥 , First Kind 𝑌𝑛 𝑥 , Second Kind

Notice where the functions are negative 
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Math Review: Bessel Functions
- Evaluate numerically 

(Wolfram alpha)
- You may see 2.405 

written as 𝑣0
𝑑

𝑑𝑥
𝑥𝑚𝐽𝑚 𝑥 = 𝑥𝑚𝐽𝑚−1 𝑥

න
0

𝑢

𝑢′𝐽0 𝑢′ 𝑑𝑢′ = 𝑢𝐽1(𝑢)
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• A reflector is a non-multiplying layer around a 
reactor core that scatters neutrons back in
– Reduces neutron leakage

• Materials like graphite, beryllium, steel 
– Low absorption
– High elastic scattering
– In thermal reactors, lower A desired 

for better moderation

Reflectors
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• Reduces critical size of active core (or enrichment)
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 ≡ 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑏𝑎𝑟𝑒 − 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

• Reduces power peaking factor (or max-to-average flux ratio)

𝑃𝑃𝐹 ≡
𝜙𝑚𝑎𝑥

𝜙𝑎𝑣𝑔
, 𝑤ℎ𝑒𝑟𝑒 𝜙𝑎𝑣𝑒 =

1

𝑉
න
𝑉

𝜙𝑑𝑉

• Increases neutron flux in 
core near the boundary

Reflector Effects 
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Reflectors and the Diffusion Equation
• Reflectors create additional regions you must solve 

separately for
– Interface boundary condition should be used
– Reflectors aren’t multiplying so no source

• 𝐵𝑚
2 ≠ 𝐵𝐺

2 no longer applies, so finding the criticality 
condition takes extra work

𝑒𝑥:
𝐽𝑐𝑜𝑟𝑒 𝑅

𝜙𝑐𝑜𝑟𝑒(𝑅)
=

𝐽𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟(𝑅)

𝜙𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟(𝑅)
(from interface)
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Diffusion Equation Problem Strategy
1. Start with the general equation and simplify, applying 

correct Laplacian for geometry
2. Write the corresponding general solution for each region
3. Eliminate terms that become negative, infinite, or 

violate symmetry within your geometry 
4. Apply boundary conditions
5. Determine critical condition (bare vs reflected)
6. Integrate power density to get magnitude of flux shape



NE150/215M - Discussion- Ian Kolaja

Energy Dependence
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Energy Equation Dependent Diffusion

• So far, we’ve considered neutrons at one energy
• In reality, neutrons are born fast and scatter down to 

thermal energies, with many neutrons in between
• If we split the energy spectrum in multiple groups, we 

can get a better model of flux. 
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Multigroup Diffusion Equation
1

𝑣𝑔

𝜕𝜙𝑔
𝜕𝑡

= 𝜒𝑔 ෍

𝑔′=1

𝐺

𝜈𝑔′Σ𝑓,𝑔′𝜙𝑔′ + ෍

𝑔′=1

𝐺

Σ𝑠,𝑔′→𝑔𝜙𝑔′ − Σ𝑡𝑜𝑡,𝑔𝜙𝑔 +𝐷𝑔∇
2𝜙𝑔

Constants
Σ𝑓,𝑔 Σ𝑡𝑜𝑡,𝑔 ≡ Fission, total cross section for group g

Σ𝑠,𝑔′→𝑔 ≡ Scattering cross section from group g to g′

𝜈𝑔 ≡ Neutrons produced per fission for group g

𝜒𝑔 ≡ The fraction of fission neutrons emitted in group g

𝐷𝑔 ≡ Diffusion coefficient for group g
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Two Group Diffusion 
• We’re only considering fast and thermal neutrons
• All fission neutrons are born into the fast group 
• There’s no up-scattering from thermal group to fast group

𝐸2 = 0 𝑒𝑉 𝐸1 = 1𝑒𝑉 𝐸0 = 10𝑀𝑒𝑉

Thermal group                                       Fast group
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Two Group Diffusion
To solve for k, you can solve the system of equations:

𝜙2 =
Σ𝑠,1→2

𝐵2𝐷2 + Σ𝑎,2
𝜙1

Substitute in 𝜙2

𝐷1𝐵
2𝜙1 + Σ𝑅,1𝜙1 =

1

𝑘
𝜈1Σ𝑓,1𝜙1 + 𝜈2Σ𝑓,2

Σ𝑠,1→2

𝐵2𝐷2 + Σ𝑎,2
𝜙1

Cancel out 𝜙1, and solve for k: 

𝑘 =
𝜈1Σ𝑓,1

𝐷1𝐵2 + Σ𝑅,1
+

Σ𝑠,1→2𝜈2Σ𝑓,2
(𝐷1𝐵2 + Σ𝑅,1)(𝐷2𝐵2 + Σ𝑎,2)
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Multigroup Matrix Form 
• For more than 2 groups, it’s helpful to write the 

multigroup equation in matrix form
• M captures your diffusion, scattering, and removal 

terms
• F captures your fission terms
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Multigroup Coupling
• You may be given 

assumptions about 
which groups can scatter 
to which groups

• Usually, thermal 
neutrons can upscatter
to other thermal groups, 
but fast neutrons can’t
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Example: Five-group Diffusion Equation 

Suppose you have a slab reactor with uniform material properties. 
Derive the five-group diffusion equation in matrix form assuming:
• There are 2 fast groups and 3 thermal groups
• The upper two groups have a fission source
• There is direct coupling between the fast groups
• Upscattering is allowed for the thermal groups
• Direct coupling applies to both downscattering and upscattering

in the thermal groups 
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Example: Five-group Diffusion Equations 

𝑀 =

−𝐷1
𝑑2

𝑑𝑥2
+ Σ𝑅,1 0 0 0 0

−Σ𝑠,1→2 −𝐷2
𝑑2

𝑑𝑥2
+ Σ𝑅,2 0 0 0

0 −Σ𝑠,2→3 −𝐷3
𝑑2

𝑑𝑥2
+ Σ𝑅,3 −Σ𝑠,4→3 0

0 0 −Σ𝑠,3→4 −𝐷4
𝑑2

𝑑𝑥2
+ Σ𝑅,4 −Σ𝑠,5→4

0 0 0 −Σ𝑠,4→5 −𝐷5
𝑑2

𝑑𝑥2
+ Σ𝑅,5

𝐹 =

𝜒1𝜈Σ𝑓,1 𝜒1𝜈Σ𝑓,2 𝜒1𝜈Σ𝑓,3 𝜒1𝜈Σ𝑓,4
𝜒2𝜈Σ𝑓,1 𝜒2𝜈Σ𝑓,2 𝜒2𝜈Σ𝑓,3 𝜒2𝜈Σ𝑓,4

0 0 0 0
0 0 0 0
0 0 0 0

,         𝜙 =

𝜙1 𝑥

𝜙2 𝑥

𝜙3 𝑥

𝜙4 𝑥
𝜙5(𝑥)
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Example: Five-group Diffusion Equations 

𝑀 =

−𝐷1
𝑑2

𝑑𝑥2
+ Σ𝑅,1 0 0 0 0

−Σ𝑠,1→2 −𝐷2
𝑑2

𝑑𝑥2
+ Σ𝑅,2 0 0 0

0 −Σ𝑠,2→3 −𝐷3
𝑑2

𝑑𝑥2
+ Σ𝑅,3 −Σ𝑠,4→3 0

0 0 −Σ𝑠,3→4 −𝐷4
𝑑2

𝑑𝑥2
+ Σ𝑅,4 −Σ𝑠,5→4

0 0 0 −Σ𝑠,4→5 −𝐷5
𝑑2

𝑑𝑥2
+ Σ𝑅,5

𝐹 =

𝜒1𝜈Σ𝑓,1 𝜒1𝜈Σ𝑓,2 𝜒1𝜈Σ𝑓,3 𝜒1𝜈Σ𝑓,4
𝜒2𝜈Σ𝑓,1 𝜒2𝜈Σ𝑓,2 𝜒2𝜈Σ𝑓,3 𝜒2𝜈Σ𝑓,4

0 0 0 0
0 0 0 0
0 0 0 0

,         𝜙 =

𝜙1 𝑥

𝜙2 𝑥

𝜙3 𝑥

𝜙4 𝑥
𝜙5(𝑥)

What if direct coupling doesn’t apply to downscattering?
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Example: Five-group Diffusion Equations 

𝑀 =

−𝐷1
𝑑2

𝑑𝑥2
+ Σ𝑅,1 0 0 0 0

−Σ𝑠,1→2 −𝐷2
𝑑2

𝑑𝑥2
+ Σ𝑅,2 0 0 0

−Σ𝑠,1→3 −Σ𝑠,2→3 −𝐷3
𝑑2

𝑑𝑥2
+ Σ𝑅,3 −Σ𝑠,4→3 0

−Σ𝑠,1→4 −Σ𝑠,2→4 −Σ𝑠,3→4 −𝐷4
𝑑2

𝑑𝑥2
+ Σ𝑅,4 −Σ𝑠,5→4

−Σ𝑠,1→5 −Σ𝑠,2→5 −Σ𝑠,3→5 −Σ𝑠,4→5 −𝐷5
𝑑2

𝑑𝑥2
+ Σ𝑅,5

𝐹 =

𝜒1𝜈Σ𝑓,1 𝜒1𝜈Σ𝑓,2 𝜒1𝜈Σ𝑓,3 𝜒1𝜈Σ𝑓,4
𝜒2𝜈Σ𝑓,1 𝜒2𝜈Σ𝑓,2 𝜒2𝜈Σ𝑓,3 𝜒2𝜈Σ𝑓,4

0 0 0 0
0 0 0 0
0 0 0 0

,         𝜙 =

𝜙1 𝑥

𝜙2 𝑥

𝜙3 𝑥

𝜙4 𝑥
𝜙5(𝑥)

What if direct coupling doesn’t apply to downscattering?
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Delayed Neutrons
• Some fission fragments will emit neutrons when they decay

– We call them delayed neutron precursors
• This must be accounted for in our neutron balances 
• These decays happen at different timescales, so we typically 

group them together
– 6 groups of precursors is standard
– 𝜆𝑖 is the decay constant of group i
– 𝛽𝑖 is the fraction of all neutrons that come from group i
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Delayed Neutron Groups for Thermal 
Fission in U-235

J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 2nd Edition, 1983, page 76.

Group Half-life (s) Decay Constant (s-1) 𝛽𝑖

1 55.72 0.0124 0.000215

2 22.72 0.0305 0.001424

3 6.22 0.111 0.001274

4 2.30 0.301 0.002568

5 0.610 1.14 0.000748

6 0.230 3.01 0.000273



NE150/215M - Discussion- Ian Kolaja

Time Dependence
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Reactivity
Reactivity measures  deviation of 𝑘𝑒𝑓𝑓 from 1.

𝜌 =
𝑘𝑒𝑓𝑓 − 1

𝑘𝑒𝑓𝑓
, [−∞, 1]

Technically unitless, but its commonly expressed in units of pcm
(percent mile) by multiplying by 105. We won’t be using pcm for 
today’s discussion.
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Reactivity in Dollars
It can also help to express your reactivity relative to your delayed 
neutron response. We express reactivity in dollars or cents.

reactivity in dollars =
𝜌

𝛽

reactivity in 𝑐𝑒𝑛𝑡𝑠 =
100𝜌

𝛽

Example: If you 50 cents of reactivity, that means 𝜌 = 𝛽/2
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Reactivity and Delayed Neutrons
The relationship between inserted reactivity and delayed 
neutrons dictates whether a reactor can be controlled
- If 0 < 𝜌 < 𝛽, the reactor is delayed critical and 

controllable since its time response depends on delayed 
neutrons 

- If 𝜌 = 𝛽, the reactor is at a tipping point; it transitions 
between being supercritical on prompt neutrons instead 
of delayed neutrons

- If 𝜌 > 𝛽, the reactor is super critical from prompt neutrons 
and cannot be controlled.
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Point Reactor Kinetics Equation

𝑑𝑃

𝑑𝑡
=
𝜌 𝑡 − 𝛽

Λ
𝑃 𝑡 +෍

𝑗=1

6

𝜆𝑗𝐶𝑗(𝑡)

𝑑𝐶𝑗
𝑑𝑡

=
𝛽𝑗
Λ
𝑃 𝑡 − 𝜆𝑗𝐶𝑗 𝑡 , 𝑗 = 1,… , 6

If reactivity does not depend on time, then you can write:
𝜌 𝑡 = 𝜌0

Λ =
ℓ

𝑘
= mean neutron generation time, where ℓ = 𝑃𝑁𝐿

1

Σ𝑎 ҧ𝜈
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