Diffusion Equation — Source) An infinite planar source, emitting S neutrons/cm?s is placed at x = 0 in
an infinite moderator with known properties (D, L). Derive the flux and current as a function of a

distance from the source.
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Use the second Boundary Condition — the Source Condition:
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Consider a bare sphere made of a uniform neutron multiplying material that is critical. Derive the shape
of the flux ¢(r) as a function of radius.
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*  Critical -> Steady state (d¢/0dt = 0)
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*  Uniform (D, Z, constant)
*  Multiplying S(#,t) = vEs (7, t)

* Slab (Spherical Cartesian)
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This equation has the general solution:
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n = 0 is trivial, n > 1 gives negative flux, son = 1 is real
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Finally, our flux shape is
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Consider a reactor that is composed of a homogenous mixture of pure U-235 and graphite. Find the
critical dimension if the reactor is:

a) A bare sphere
b) A bare finite cylinder with a height equal to twice the radius

Which of these reactor shapes has the smallest critical mass of U-235 and why?

N,
N—C = 104, L? = 3040 cm?, vofU = 5.916b, ol =2.844b, pY =19.1 g/cm?3
U
ol =34%x107%, p¢=1.60g/cm3
Solution:

First, we calculate the material buckling for the provided material, since it will be the same for both
reactors.
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a) We can relate the material buckling to the geometric buckling
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b) We do the same for cylinders:

Bz_Bz_(ﬂ)2+<2.405>2_(n)2+<4.81)2_8.25_>R_ 825 _ . .. ¢
m =% = \2r R ) ~\2r 2R) ~ RZ 0T gz TR

c) m(sphere) < m(cylinder). You can show this by calculating the volume or mass, but you can
intuitively know this by recognizing that the sphere will have the smallest amount of leakage.



Consider a critical bare slab of thickness a. Determine the flux peaking factor (maximum flux-to-average
flux ratio). The flux shape is given by:
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The maximum flux will be in the center of the slab:

Pmax = ¢(x = 0) = Acos (%O) =A

The average flux is determined by integrating the flux over x. Normally we’d divide by V, but the slab is
one dimensional:
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Multi-group diffusion) Starting from a general steady-state multigroup neutron diffusion equation in
slab geometry, derive four-group diffusion equations assuming that:

1) The fission source exists in the upper three groups
2) Only the lowest group contains thermal neutrons
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No upscattering since there is only one thermal neutron group, and down-scattering is not
assumed to be coupled.
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