
Diffusion Equation – Source) An infinite planar source, emitting 𝑆 neutrons/cm2𝑠 is placed at 𝑥 = 0 in 

an infinite moderator with known properties (D, L). Derive the flux and current as a function of a 

distance from the source. 

1

𝑣

𝜕𝜙(𝑟, 𝑡)

𝜕𝑡
= 𝑆(𝑟, 𝑡) − Σ𝑎(𝑟)𝜙(𝑟, 𝑡) + ∇ ∙ 𝐷(𝑟)∇𝜙(𝑟, 𝑡) 

Solution) 

 



 

 

  



Consider a bare sphere made of a uniform neutron multiplying material that is critical. Derive the shape 

of the flux 𝜙(𝑟) as a function of radius. 

 

Solution)  

1

𝑣

𝜕𝜙(𝑟, 𝑡)

𝜕𝑡
= 𝑆(𝑟, 𝑡) − Σ𝑎(𝑟)𝜙(𝑟, 𝑡) + ∇ ∙ 𝐷(𝑟)∇𝜙(𝑟, 𝑡) 

• Critical -> Steady state (𝑑𝜙 𝜕𝑡⁄ = 0) 

• Uniform (𝐷,  Σ𝑎 constant) 

• Multiplying 𝑆(𝑟, 𝑡) = 𝜈Σ𝑓𝜙(𝑟, 𝑡) 

• Slab (Spherical Cartesian) 

 

1

𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝜙

𝑑𝑟
+ 𝐵𝑚

2 𝜙(𝑟) = 0 

This equation has the general solution: 

𝜙(𝑟) = 𝐶1

cos(𝐵𝑚𝑟)

𝑟
+ 𝐶2

sin(𝐵𝑚𝑟)

𝑟
 

BC 1) Finite flux 

lim
𝑟→0

𝜙(𝑟) < ∞   but   lim
𝑟→0

cos(𝐵𝑚𝑟)

𝑟
→ ∞   so   𝐶1 = 0 

BC 2) Vacuum Boundary 

𝜙(𝑅̃) = 0 = 𝐶2

sin(𝐵𝑚𝑅̃)

𝑅̃
⇒ 𝐵𝑚𝑅̃ = 𝑛𝜋,   𝑛 = 0,1,2,… 

𝑛 = 0 is trivial,  n > 1 gives negative flux,  so n = 1 is real 

𝐵𝑚 =
𝜋

𝑅̃
,   𝐵𝑚

2 = 𝐵𝑔
2 = (

𝜋

𝑅̃
)
2

 

Finally, our flux shape is 

𝜙(𝑟) = 𝐶2

1

𝑟
sin (

𝜋

𝑅̃
𝑟) 

  



Consider a reactor that is composed of a homogenous mixture of pure U-235 and graphite. Find the 

critical dimension if the reactor is: 

a) A bare sphere 

b) A bare finite cylinder with a height equal to twice the radius 

Which of these reactor shapes has the smallest critical mass of U-235 and why?  

𝑁𝐶

𝑁𝑈
= 104, 𝐿2 = 3040 𝑐𝑚2, 𝑣𝜎𝑓

𝑈 = 5.916𝑏, 𝜎𝑎
𝑈 = 2.844𝑏,   𝜌𝑈 = 19.1 𝑔/𝑐𝑚3 

𝜎𝑎
𝐶 = 3.4 × 10−6𝑏, 𝜌𝐶 = 1.60 𝑔/𝑐𝑚3 

 

 

Solution: 

First, we calculate the material buckling for the provided material, since it will be the same for both 

reactors. 

𝐵𝑚
2 =

𝑘∞ − 1

𝐿2
 

𝑘∞ = 𝜀𝑝𝜂𝑓 ≈ 𝜂𝑓 =
𝜈Σ𝑓

𝑈

Σ𝑎
𝑈 + Σ𝑎

𝐶 =
𝜈σ𝑓

𝑈

σ𝑎
𝑈 +

𝑁𝐶
𝑁𝑈

σ𝑎
𝐶

=
5.916𝑏

2.844𝑏 + 104 ∙ 3.4 × 10−6𝑏
= 2.06 

𝐵𝑚
2 =

2.06 − 1

3040 𝑐𝑚2
= 3.49 × 10−4 𝑐𝑚−2 

a) We can relate the material buckling to the geometric buckling 

𝐵𝑚
2 = 𝐵𝑔

2 = (
𝜋

𝑅
)
2

=> 𝑅 = √
𝜋2

𝐵𝑚
2 = 168.17 𝑐𝑚 

 

b) We do the same for cylinders: 

𝐵𝑚
2 = 𝐵𝑔

2 = (
𝜋

2𝑅
)
2

+ (
2.405

𝑅
)
2

= (
𝜋

2𝑅
)
2

+ (
4.81

2𝑅
)
2

=
8.25

𝑅2
=> 𝑅 = √

8.25

𝐵𝐺
2 = 153.75 𝑐𝑚 

c) 𝑚(𝑠𝑝ℎ𝑒𝑟𝑒) < 𝑚(𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟). You can show this by calculating the volume or mass, but you can 

intuitively know this by recognizing that the sphere will have the smallest amount of leakage. 

  



Consider a critical bare slab of thickness a. Determine the flux peaking factor (maximum flux-to-average 

flux ratio). The flux shape is given by: 

𝜙(𝑥) = 𝐴𝑐𝑜𝑠 (
𝜋

𝑎̃
𝑥) 

 

Solution 

𝑃𝑃𝐹 =
𝜙𝑚𝑎𝑥

𝜙̅
 

The maximum flux will be in the center of the slab: 

𝜙𝑚𝑎𝑥 = 𝜙(𝑥 = 0) = 𝐴𝑐𝑜𝑠 (
𝜋

𝑎̃
0) = 𝐴 

 

The average flux is determined by integrating the flux over x. Normally we’d divide by V, but the slab is 

one dimensional: 

𝜙̅ =
1

𝑎
  ∫ 𝜙(𝑥)𝑑𝑥

𝑎/2

−𝑎/2

=
𝐴

𝑎
  ∫ 𝑐𝑜𝑠 (

𝜋

𝑎̃
𝑥)𝑑𝑥

𝑎/2

−𝑎/2

=
𝐴

𝑎

𝑎̃

𝜋
[sin (

𝜋𝑎

2𝑎̃
) − sin (−

𝜋𝑎

2𝑎̃
)] 

assuming a ≈ ã 

𝜙̅ =
𝐴

𝜋
[sin (

𝜋

2
) − sin (−

𝜋

2
)] =

𝐴

𝜋
[1 − −1] =

2𝐴

𝜋
 

 

 

 

 

 

 

 

 

 

 

 

 

  



Multi-group diffusion) Starting from a general steady-state multigroup neutron diffusion equation in 

slab geometry, derive four-group diffusion equations assuming that: 

1) The fission source exists in the upper three groups 

2) Only the lowest group contains thermal neutrons 

1

𝑣𝑔

𝜕𝜙𝑔

𝜕𝑡
= 𝜒𝑔 ∑ 𝜈𝑔′Σ𝑓,𝑔′𝜙𝑔′

𝐺

𝑔′=1

+ ∑ Σ𝑠,𝑔′→𝑔𝜙𝑔′

𝐺

𝑔′=1

− Σ𝑡𝑜𝑡,𝑔𝜙𝑔 + 𝐷𝑔∇2𝜙𝑔 

No upscattering since there is only one thermal neutron group, and down-scattering is not 

assumed to be coupled. 

𝑀𝜙 =
1

𝑘
𝐹𝜙 

𝑀 =

[
 
 
 
 
 
 
 
 −𝐷1

𝑑2

𝑑𝑥2
+ 𝛴𝑅,1 0 0 0

−𝛴𝑠,1→2 −𝐷2

𝑑2

𝑑𝑥2
+ 𝛴𝑅,2 0 0

−𝛴𝑠,1→3 −𝛴𝑠,2→3 −𝐷3

𝑑2

𝑑𝑥2
+ 𝛴𝑅,3 0

−𝛴𝑠,1→4 −𝛴𝑠,2→4 −𝛴𝑠,3→4 −𝐷4

𝑑2

𝑑𝑥2
+ 𝛴𝑅,4]

 
 
 
 
 
 
 
 

 

𝐹 = [

𝜒1𝜈𝛴𝑓,1 𝜒1𝜈𝛴𝑓,2 𝜒1𝜈𝛴𝑓,3 𝜒1𝜈𝛴𝑓,4

𝜒2𝜈𝛴𝑓,1 𝜒2𝜈𝛴𝑓,2 𝜒2𝜈𝛴𝑓,3 𝜒2𝜈𝛴𝑓,4

𝜒3𝜈𝛴𝑓,1 𝜒3𝜈𝛴𝑓,2 𝜒3𝜈𝛴𝑓,3 𝜒3𝜈𝛴𝑓,4

0 0 0 0

],         𝜙 =

[
 
 
 
𝜙1(𝑥)

𝜙2(𝑥)

𝜙3(𝑥)

𝜙4(𝑥)]
 
 
 

 

 

 


