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Pebble Assessment
• Objective: Simulate a realistic detected gamma spectrum from a 

gFHR fuel pebble and use ML to make predictions with it
• Challenges and Considerations:

– About 2,300 pebbles leave the core a day, giving us about 40 
seconds max to measure each pebble

– Even with decay times of up to several days, pebbles emit on 
the order of 1013 gammas per second

– For a detector, this could lead to serious dead time without 
prohibitively expensive shielding

• Can ML provide an edge over regression approaches?
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Hypothetical Burnup Measurement System
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Detected Spectrum Generation
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Emitted Gamma Source Generation
• Discharge compositions used to generate 

spectra
– Unique, pebble-level data from HxF
– Kairos Power gFHR at equilibrium

• Different decay times between 0 and 10 days
– 120 second variance applied

• Spectra produced in Serpent
– Decay step (neutron mode)
– Gamma source (photon mode)
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Detector Model (HPGe)

concrete wall
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(based on 

GMX40P4-83)

Double Cone 

Tungsten 
Collimator

Tungsten Sleeve

Attenuation Disks

Total pebble distance 250 cm

Collimator Length 54 cm

Detector Dimensions 6.06 x 6.69 cm

Photopeak Efficiency @ 1MeV 2.19 x 10-8

Fuel Pebble
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Detector Model (LaBr3)

concrete wall

Lead bricks

LaBr3 detector
(76x76 mm)Double Cone 

Tungsten 
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Tungsten Sleeve

Attenuation Disks

Total pebble distance 170 cm

Collimator Length 27 cm

Detector Dimensions 7.6 x 7.6 cm

Photopeak Efficiency @ 1MeV 1.87 x 10-7

Fuel Pebble



Ian Kolaja – ML Pebble History Prediction

Detector Response Simulation: Tally
• Simulated at 16 different source energies
• Monoenergic source sampled from pebble
• Pulse height tally in detector crystal
• Energy bins in the tally are divided to capture different 

reactions:
– Coarse bins (20-50 keV wide) for continuum
– Very fine bins for discrete energies (photopeak, pair 

production, single and double escape peaks)
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Detector Response Function
• 12000 channels from 0.25 MeV to 4.7 MeV
• Discrete peaks efficiencies are interpolated
• Continuum is fit with a RFR model
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Detector Response Matrix

Emission Spectrum
Average Incident Spectrum



Ian Kolaja – ML Pebble History Prediction

Dead time and pile-up
40s measurement time with 0.4s standard deviation
With average count rate R and measurement time t:
• Sample total counts N~Poisson(Rt)
• Sample N energies E from average spectrum

– Gaussian broadened
• Sample N waiting times t~Exp(1/R)
Events arriving:
• during peaking time are summed
• during dead time are rejected
• after are recorded normally

HPGe Dead Time 6 µs

LaBr3 Dead Time 0.016 µs
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HPGe
(5d decay)

LaBr3
(1d decay)
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Pebble Prediction
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Pebble Assessment: Two Layers
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Nuclide Feature Importance (Ideal)
• A Random Forest Regressor 

(RFR) model is trained for each 
history parameter using actual 
concentrations from Serpent

• Informs which nuclides we need 
to predict

• Highlights physical trends and 
correlations

Nuclide Importance for Thermal 

Fluence on Last Pass
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Spectrum Feature Importance
• For each nuclide, a RFR is fit using 

the actual spectral data
• The most important channels are 

determined
• Then, a NN model is trained and its 

hyperparameters optimized using 
only useful channels

• Rarely determined by that nuclide’s 
own decay gammas

239Pu Channel Importance

140La
(t1/2 = 1.678 d)
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Final Model Training

• Neural Networks are optimized 
for each history parameter 
using the predicted important 
nuclides 

• Number of hidden layers and 
layer sizes are coarsely 
optimized in large grid search

# Epochs 300

Batch Size 256

Activation ReLU

Learning Rate 0.001

Network Sizes 

tried 

(8, 2), (64, 8), 

(128, 16), (36)

Max Depth 14

# Estimators 1000

Min. Feature Split 1

Bootstrapping True

Random Forest Regressor Parameters

Neural Network Parameters
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History Metrics Performance
R2 accuracy of model (HPGe – 40s measurement – 5d decay)

LR on full 

Spectrum

NN on pred. 

nuclides

RFR on actual 

nuclides

%FIMA (burnup) 0.8021 0.9740 1.0000

Residence Time 0.8003 0.9671 0.9999

Passes 0.7974 0.9691 0.9999

Avg radial path 

on last pass

-1.9720 0.6643 0.9554

Thermal fluence 

on last pass

-3.9159 0.5576 0.8468

Baseline             Detected             Idealized
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History Metrics Performance
R2 accuracy of model (LaBr3 – 40s measurement – 1d decay)

LR on full 

Spectrum

NN on pred. 

nuclides

RFR on actual 

nuclides

%FIMA (burnup) 0.7770 0.9856 1.0000

Residence Time 0.5851 0.9888 0.9999

Passes 0.5825 0.9848 0.9999

Avg radial path 

on last pass

-1.8001 0.8969 0.9554

Thermal fluence 

on last pass

-6.2175 0.8369 0.8468

Baseline             Detected             Idealized
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Conclusions & Final Work
• Conclusions

– Machine learning offers greater accuracy than linear regression
– Timing resolution is more important than energy resolution
– HPGe detectors may be prohibitively expensive to run

• Future Work
– Explore other detector choices & further optimize setup
– Run different measurement times (multiples of 40s)
– More extensive ML model optimization
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Thank you!
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