Ian Kolaja Qualifying Exam
Machine Learning in PBR Measurement and

Simulation
May 9th, 2024

Berkeley ankolgja QE-1



Overview

Machine learning is valuable for Pebble Bed Reactor (PBR)
operation because it enables faster and more accurate discharge
fuel measurement and enhances core simulation capabilities

Outline

1. Introduction to PBR physics

2. Discharge pebble history and composition prediction
3. Predicting core state from discharge fuel

4. PEARLSim: Using ML for hyperfidelity core simulation
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1) Introduction to Pebble Bed Reactor
Physics
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Pebble Bed Reactor Overview

I((

- Use fuel “pebbles” instead of fuel rods -
— 104-10° pebbles in the core
— Constant fuel circulation li
 Featurescoolants other than water
— Nonreactive gas (i.e. Helium) 4
— Molten Salt (i.e. FLiBe) o d

Mk1 PB-FHR schematic

Pebble fuel element Cross-section TRISO particle

Schematic diagram of the pebble fuel, TRISO particle, and their
relationship, Maolong Liu



Design used: Generic FHR

«  Benchmark modelreleased by Kairos Power
« Relevant operating characteristics

— 250,000 fuel pebbles (2cmradius)

— Pebbles strictly make 8 passes
« Reactorphysicsinsights

— Neutron diffusion length much larger

than pebbleradius
— Doesn’t have conicregions
 Relativelyflat velocity profile

Berkeley
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Questions on section?
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2) Discharge Pebble History and
Composition Prediction

Berkeley anKolaja QE -8



Pebble Assessment

 Objective: Simulate arealistic detected gamma spectrum froma
gFHR fuel pebble and use ML to make predictions with it

* Challengesand Considerations:

— About 2,300 pebbles leave the core a day, givingus about 40
seconds max to measure each pebble

— Evenwith decay times of up to several days, pebbles emit on
the order of 103 gammas per second

— Foradetector, this could lead to serious dead time without
prohibitively expensive shielding

¢ Can ML help overcome these challenges?

UNIVERSITY OF CALIFORNIA
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Hypothetical Burnup Measurement System

Discharged fuel

Defueling Additional
Chute Storage*

@ 0-10 days of cool down

Concrete Wall

I Measurement

Room

Discarded fuel
(burnup exceeds
threshold)

Reinserted fuel @ Max: 40s per pebble, per detector
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Detected Spectrum Generation
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Emitted Gamma Source Generation

* Discharge compositions used to generate
spectra

ty (/s)

w4

— Unique, pebble-level data from HxF
 Different decaytimes between 0 and 10 days
— 120second variance applied
« Spectraproduced inSerpent e
— Decaystep (neutron mode) H
— Gamma source (photon mode) o S | ;

Berkeley
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Total pebble distance 250 cm

Detector Model (HPGe) | cotmatorienste 54 om

Detector dimensions 6.06 x 6.69 cm
@ 5 days of cooldown Average true count rate 220,000 cps

Attenuation Disks
concrete wall

Pebble Detector

Lead bricks

T " | Al

Fuel Pebble Double Cone (based on

Tungsten GMX40P4-83)
Collimator

Tungsten Slee
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Total pebble distance 170 cm

Detector Model (LaBr3) coumeorenan 27 om

Detector dimensions 76x7.6cm
@ 1 day of cooldown Average true count rate 870,000 cps

Attenuation Disks
concrete wall

Pebble Detector

Lead bricks

\ ‘ LaBr; detector

Fuel Pebble Double Cone (76x76 mm)
Tungsten

Collimator

Tungsten Slee
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Detector Response Simulation: Tally

Simulated at 16 different source energies
Monoenergic source sampled from pebble
Pulse height tally in detector crystal

Energy bins in the tally are divided to capture different
reactions:

— Coarse bins (20-50 keV wide) for continuum

— Very fine bins for discrete energies (photopeak, pair
production, single and double escape peaks)
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Detector Response Function

« 12000 channels from 0.25 MeVto 4.7 MeV
Discrete peaks efficiencies are interpolated
. Continuum iS ﬁt With 3 RFR model Detector Response from 3.7502 MeV Source
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Detector Response Matrix

Emission Spectrum

Loz Detector Response Matrix (log scale) Average Incident Spectrum
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Dead time and pile-up

40s measurement timewith 0.4s standard deviation
With average countrate Rand measurementtimet:
« Sample total counts N~Poisson(Rt)

HPGe Dead Time | 6 us
LaBr3 Dead Time | 0.016 ps

» Sample N energies E from average spectrum Paralyzable

— Gaussian broadened =
* Sample Nwaiting times t~Exp(1/R) ‘P’H_‘ W |
Eventsarriving: VAN AAN
* during peaking time are summed V.
* during dead time are rejected
« afterarerecorded normally B Coprcsct b i S
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103-5

Counts

HPGe |
(5d decay) 10

10° = . . — — — — sl

LaBr3
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Pebble Prediction
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Pebble Assessment: Two Layers

Models Concentrations Models Parameters

\\"”LM ML Nuclide ML History
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Nuclide Feature Importance (Ideal)

« A Random Forest Regressor Nuclide Importance for Thermal
(RFR) modelis trained for each _Fluence on Last Pass
history parameter using actual 0.041
concentrations from Serpent

- |Informs which nuclides we need

0.03 1

0.02 1

Mean decrease in impurity

to predict 0.011

o 1 1 1 0.00
Highlights physical trends and IO IOIR 319 99
correlations o> P T e T gt e

Nuclide
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Spectrum Feature Importance

239Py Channel Importance

urity

0.3

« Foreach nuclide,aRFRisfit using
the actual spectral data

ase in imp

0.2 1

- Themostimportant channels are
determined 5.

- Then,aNN modelistrained and its ! DetctrEneron
hyperparameters optimized using

only useful channels

- Rarely determined by that nuclide’s W\ (ty. F1.678 d)

own decay gammas

100,

1.50 1.55 1.60 1.65
Energy (MeV)
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Final MOdel Training Random Forest Regressor Parameters

Max Depth 14

- Neural Networks are optimized # Estimators 1002
for each history parameter Min. Feature Split | 1
using the predicted important Bootstrapping True
nuclides Neural Network Parameters

-  Number of hiddenlayers and # Epochs 300
layer sizes are coarsely Batch Size 256
optimizedinlarge grid search Activation ReLU

Learning Rate 0.001

Network Sizes (8, 2), (64, 8),
tried (128, 16), (36)
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History Metrics Performance

R? accuracy of model (HPGe — 40s measurement — 5d decay)

LR on full NN on pred. RFR on actual

Spectrum nuclides nuclides
%FIMA (burnup) | 0.8021 0.9740 1.0000
Residence Time | 0.8003 0.9671 0.9999
Passes 0.7974 0.9691 0.9999
Avg radial path | -1.9720 0.6643 0.9554
on last pass
Thermal fluence | -3.9159 0.5576 0.8468
on last pass

Baseline Detected Idealized
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History Metrics Performance

R? accuracy of model (LaBr3 — 40s measurement — 1d decay)

LR on full NN on pred. RFR on actual

Spectrum nuclides nuclides
%FIMA (burnup) | 0.7770 0.9856 1.0000
Residence Time | 0.5851 0.9888 0.9999
Passes 0.5825 0.9848 0.9999
Avg radial path | -1.8001 0.8969 0.9554
on last pass
Thermal fluence | -6.2175 0.8369 0.8468
on last pass

Baseline Detected Idealized
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Conclusions & Future Work

* Conclusions
— Machine learning offers greater accuracy than linear regression
— Timing resolutionis more important than energy resolution
— HPGe detectors may be unnecessarily expensive to run
*  Future Work
— Explore other detector choices & further optimize setup
* Faster planar HPGe
* Methods like pulse reconstruction or Compton suppresion
— Rundifferent measurement times (multiples of 40s)
— More extensive ML model optimization
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Questions on section?

ﬁﬁgglﬁ?}l@}? lan Kolaja QE - 28



3) Predicting Core State from
Discharge Fuel
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Core State Prediction

* Objective: Predict the overall core state using the current operating
parameters and the predictions made from discharge pebbles

* Challengesand Considerations:
— Noin-core measurements possible

— Latency: Changes to pebble insertion take at least 10
iterations/65 days to fully propagate through the core

* Reaching new equilibria after operation change takes longer
— Extracting meaning from thousands of discharge pebbles
— Expensive to simulatelong operating sequences in hyper-fidelity
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Discharge Pebble Feature Extraction

Coresimulators handle pebble movement in coarse steps
— Exact order of pebbles coming out during a timestep largely
meaningless
— Using each discharge pebble as input would require
massive networks
Simple approach: Average the predicted features of all pebbles
discharged during one time step
Radial zone approach: Using its predicted average radial path,
associate each pebble with aradial zone in the core, and take
averages for each zone
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Core State Prediction

Individual Averaged history
Pebbles parameters
Discharged (burnup, fluence, Core State (K,
from t,to t, etc) ' power and flux
distributions)

Feature Extraction Window

Operating Parameters (burnup
threshold,power, graphite insertion fraction)
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Time Series Data Generation

Test/train split

- Generating long operating j
sequences in HxF expensive | T oo iveshos

—— Graphite Insertion Fraction

- Fornow, azone-based core .
\ | |

simulatoris used (PEARLSIim)
— Explainedin next section g o

- Featuresare extracted from
zone-averaged pebbles /

- Mock startup sequence . | | | |
generated with some power & L ey
burnup threshold perturbations

ed Value

Standard
L
[
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RFR single time step results
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Sequence Prediction with LSTM

- UseofalongShort-Term
Memory (LSTM) network allows h
model to use input vectors from
previous timesteps

+ Better handles latency and
oscillation of reactor response

- Additional hyperparameter to
trainin length of look-back
window

Layer ComponentwiseCopy Concatenate

Legend: P
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[LSTM results

flux_R1Z4E1 Predictions vs. Actual Values and Power

T
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Conclusions & Future Work

* Conclusions (early)

— Sofar,little difference in performance between averaged and
radial-zone-averaged features

* Future Work
— Removing unphysical k.¢/flux oscillation in data generation

« Apparent consequence of xenon building up in fresh fuel on
timescale shorter than one time step

— Including rod worth as target
— Generating pebble datain hyperfidelity instead of zones
— Forecasting core state X time stepsinto the future
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Questions on section?
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4) PEARLS1m: Using ML for
hyperfidelity core simulation

Berkeley /an Kolaja QE - 51



Hyperfidelity PBR Modeling

* Objective: Speed up hyperfidelity PBR calculations to generate
longer training sequences for core state model

* Challengesand Considerations:

— Simulating 250,000 unique pebbles computationally
expensive

* Very high memoryfootprint
* Many particle histories needed for acceptable MC error

« CanMLbeused to predict accurate pebble-wise fluxand depletion
coefficients to circumvent the need for hyperfidelity MC?
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PEARLSim: Hybrid approach

Core state features
(keff, power/flux meshes)

| Core flux mesh Surface | pebble position — Emitted gammas
Simulator e Pebble

‘ Pebble current . . _

A & power for gﬁ?;:fd Pebble Simulator | Actual nuclides &
T measured composition history features

Operating pebbles Kernel €=

parameters 2 ot Burnup

threshold, epresentative :

E)ower % training materials gl Predicted pebble

graphi:[e nuclides after bum

pebbles)

Pass burnup distributions
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Zone Model for Core-Wide data

« Corevolume divided intozones with Zone Thermal Flux (Equiibrium) sets

similar flux 350 +

 Groups of pebbles are given average 300 -

fuel compositions _

— ~400 materialsinstead of 250k |

« Accurately captures core-wide |
properties like k¢ and the 100

distribution of flux/power |

100 120
- Cansimulate 6.5 days of operationin it ostion e
5-15 minutes

N
U
o

Height (cm)
N
o
o

[
i
o
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Zone-Based Core Simulator

- Eachzone has a certain proportion
of different fuel types

Z4 oy .
- Pebble positionsinzoneare
s - randomly assigned a fuel type
—= + Average fluxforeach group
Q .
- o) computed for depletion
Zone Z1R3:
43% Graphite Pebbles
Z1 7% Group 1 Fuel Pebbles (FuelZ1R3G1)

7% Group 2 Fuel Pebbles

7% Group 8 Fuel Pebbles
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Zone-Based Core Simulator

* Oneveryiteration:

— Material data and proportions
are moved tozone above

— Materials at the top are:

* Potentially discarded based
on burnup

« Sortedin burnup groups and
volume-averaged

— Averaged materials and fresh
Fresh Fuel  fuelisreinserted at the bottom

Spent Fuel

Volume/Pass Averaging
Jojoajey
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Zone-Based Core Simulator

* Reminder: changesinoperating
parameters take awhile to fully
propagate through the core

« Operating Parameters:
— Power
— Fuelinsertion fractions
— Burnup discard threshold
— Burnup time step

Spent Fuel

Volume/Pass Averaging

Fresh Fuel
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Pebble Discarding Criteria

] Assumed distribution of
« T, Threshold for %FIMA is set by operator _pebblesingroupwith s = 18.2

- Average burnup, b, is calculated foreach
fuel group at the top of the core 7 Threshold, T

»  Pebble burnup B~N(bg, o)
» Fraction of pebbleskept=P(B < T)
- Standard deviation o, for group
— Currently assumed from HxF result

— Later will be acquired by hyperfidelity
pebble model runningin parallel

Reinserted Discarded

Pebble %FIMA
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Zone-Based Core Simulator Output

Core-wide parameters as a function of S e L o e

time and operating inputs .
— Keff > |
— Power profile by zone ® |
— Flux profile by zone, energy group g |
- Zone/burnup group averaged discharge o -
compositions 0 |

100 120

o

Height (cm)
o

Radla\ Posmon (cm}

Berkeley
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PEARLSImM

Core flux mesh
Zone
S|mU|at0r Pebble current
A & power for
1 measured
pebbles
Operating
parameters .
(threshold Representative
power, % ’ training materials
graphite
pebbles)

Surface

Current
Model

Predicted
Current

Core state features
(keff, power/flux meshes)

Pebble position

Individual

Pebble

Emitted gammas

Pebble Simulator | Actual nuclides &

composition

Pebble
Depletion

h

Model

Predicted pebble

nuclides after bum

Berkeley
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Burnup Distribution - o by pass

history features
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Pebble Surface Current Model

1074

| Avg %FIMA of fuel pebbles within 20 cm  |—{  [FeSSIER

Model
Zone Thermal Flux (Equilibrium) 1e14 ode

+ 1 Energy (MeV) 1
' Flux

' interpolated

- at (r,z) Power interpolated Power ML Model

. at (r,z)

0 @ 100 120 I Pebble Powerl
Radial Position (cm)

- Example Pebble Inward Currents
I Pebble Position (r,z) I— iy =——

- - NE 1013
I Nuclide Concentrations I— £

S 101
0 : e —> £

I %o of graphite pebbles within 20 cm I— S 1o
£
g

Height (cm)
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Current Model Data Generation

* Re-runselect few of Serpent steps
throughout operation history

« Addinward current tallies toouter
surface of 5000 random pebbles

— 18 energy groups

« Extract per pebble power from pebble
bed

* Run with much higher numbers of
particles (3000 cycles, )

« Takes 8 hours with 4 nodes (32 core)

JORENEN|
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Feature Extraction: Flux/Power mesh interpolation

Zone Thermal Flux (Equilibrium) 1e14

KNN Resampled Flux on Finer Gride14

350

200 300

— ] ) '€ 250
E 250 KNN interpolationat =

= each pebble (r,z) 5, 200
S 200 > T
S 2

£ . 150

100

100

0 20 40 60 80 100 120
Radial Position (cm)
Radial Position (cm)

Single value feature computed for

Raw data generated on each iteration each pebble
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Pebble Surface Current Model Performance

Current Model Error

12 A

10

Mean Average Percent Error (%)
=]
1

10-6

Berkeley
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T
1074
Energy (MeV)

102

10°

Average Pebble Surface Current (nfcm™2-s)

Simulated vs Predicted Pebble Current

102° 4

1018 4

1016 4

1014 A

1012 A

— Actual
— Predicted

T T
10-6 10~ 102 10°
Energy MeV

Predicted Power (W)

100 4

Power Model Performance

0 100 200 300 400 500 600
Actual Power (W)

Power MAPE: 7.41%
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PEARLSImM

Core state features
(keff, power/flux meshes)

Interpolated

core fluxmesh | SUrface | pebble position — Emitted gammas
Zone » Current [« Individual ’—p
Model_ Pebble

Simu Iator Pebble current . i
A & power for gﬁ?écntfd Pebble Simulator | Actual nuclides &
1 measured composition history features
Operating pebbles Pebble [R—
parameters 2 ot Depletion
threShOId, epresentative .
E)ower % training materials Soe Predicted pebble
graphi:[e nuclides after bum
pebbles)

Burnup Distribution - o by pass
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Kernel Depletion Model

Example Pebble Inward Currents

Kernel

Burnup ML Resulting Nuclide Inventory I
Model

10° 10
Energy (MeV)

I Depletion Time I—

I Starting Nuclide Inventory I—
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Data Generation

Random materials aresampled
from throughout the zone
simulator’s history to get starting
concentrations

A pebble with that material is

modeled in Serpent in isolation
withrandomly selected current
distributions and power values

The final concentration after some
depletion time is extracted

lan Kolaja QE-67

UNIVERSITY OF CALIFORNIA



0
=] =] Q =] =1
— @© @ = ~ =]

Burnup MAPE Error by Nuclide

- = (o 0]
EEEEEEE & 1
IiEEENE EEEEN IN @}
(%]
wE B m 8 8 8 o
EEEEEENEEE a8 (1o}
o IJ
~G 2 (1°]
IHNENEEEETE NES; ©
2 EEEEEECE (o)
llllll-mlillll [ ] A X
EEEEEEEI: ZEEEEE § EEEE o e
®  iEEEEEE EEEEE Ga 1]
Emmmme; SIEEEEEEEEENEEEEN 2 —
) © © - o~ o oo™ = n &
A 2 = T 0§ F X  OiEEEEEErEEEEEEEE Ry
(N) suoanaN yo Jaquiny _m EEEEEEEEEEEEEEEEEEE
2
= R E
SiEEEEEEEEEEEEEEEREEEL =
ol
S5 I
o
lllllllll-lllllll-l
(=)}
Qo [} < o (=] Q0 w = o~ o 84
@ @ @® W O ~ ~ K~ ~ Kk ©
(N) suosgnaN jo Jequinpy
o
o (=] (=] (=] (=]
— o« o < o~ (=]
(=]
['al
EEEEE
SiNEEEEEENEN 2
T ©
=] <t
z N
2 S
— o
:
w —
o o
& Sy
= o
= R E
a e
3 (]
c m
E
3
2] 3
ENEEEEEEEEEEEEE
- ﬂ
2 B 3 5 3F

(N) suosInap jo JaquinN

100
80
- 60
0
0

10n Model Performance

| —
o)}
Q
] L
= o
W]
S — -
= [~
- >
) g 2
L 2
e l~ 8
- Ry
18] [
i - 2
o <+ o
- £ .
= l— E
m >
e = =
S
L
r— = ~ <
u =
H3
| ] -]
D LY :
(=]
— [
H W 4 W 4 VW 4 W o4 W o (=]
n M N o o M~ o s m o e
— H ~ =
(N) suoanap Jo Jaquinpy m
z




PEARLSImM

Core state features
(keff, power/flux meshes)

Interpolated surf 3
core flux mesh Urtace | pebble position — | Emitted gammas
Simulator Lt Pebble
Pebble current . [ .
A & power for CP;redlct;ad Pebble SImUIatou Actual nuclides &
1 measured urren nuclides history features
Operating pebbles Pebble |€=—
parameters = o Depletion
threshold, epresentative :
E)ower % training materials 1@l Predicted pebble
graphi:[e nuclides after bum
pebbles)

Burnup Distribution - o by pass
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Individual Pebble Model

Pebble Positions

1. Update pebblelocations according
to velocity profile

2. Predict current and power for each

S pebble
B Predicted Pebble 3. Update nuclide inventories with
Thermal Currents ... depletion model

" 4. Savedischarge pebble data

~5. Ifenabled, provide burnup
| distribution data as feedback to
zone simulator
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Conclusions & Future Work

* Conclusions
— Generating pebble-wise flux informed by zone simulator flux is possible
*  Future Work
— Current Model
* Increase number of energy groups in current model
— Depletion Model
* UseMLinstead to predict cross sections or very fine flux
* Incorporate Bateman Equation solver from OpenMC
— Explore potential accuracy gains
*  Much smaller substeps feasible
* Predictor-corrector method that accounts for movement
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Questions on section?

Berkeley /anKolaja QE - 72



Final Conclusions

Machine learning is valuable for Pebble Bed Reactor (PBR) operation
because it enables faster and more accurate discharge fuel measurement
and enhances core simulation capabilities

Key Insights
*  Wecanuse ML to predict alot of information from gamma spectra
detected from fuel, even with alot of noise or poor energy resolution
— LaBr3currently performs better with less shielding and few peaks
* These pebble predictions can be used with ML to predict core state
*  Wecan use ML to generate hyperfidelity data faster
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Thank you!
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