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Overview
Machine learning is valuable for Pebble Bed Reactor (PBR) 
operation because it enables faster and more accurate discharge 
fuel measurement and enhances core simulation capabilities

Outline
1. Introduction to PBR physics
2. Discharge pebble history and composition prediction
3. Predicting core state from discharge fuel
4. PEARLSim: Using ML for hyperfidelity core simulation
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1) Introduction to Pebble Bed Reactor 
Physics
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Pebble Bed Reactor Overview
• Use fuel “pebbles” instead of fuel rods

– 104-105 pebbles in the core
– Constant fuel circulation

• Features coolants other than water
– Nonreactive gas (i.e. Helium)
– Molten Salt (i.e. FLiBe)

Mk1 PB-FHR schematic
Schematic diagram of the pebble fuel, TRISO particle, and their 

relationship, Maolong Liu
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Design used: Generic FHR
• Benchmark model released by Kairos Power
• Relevant operating characteristics

– 250,000 fuel pebbles (2cm radius)
– Pebbles strictly make 8 passes

• Reactor physics insights
– Neutron diffusion length much larger 

than pebble radius
– Doesn’t have conic regions

• Relatively flat velocity profile
gFHR benchmark diagram
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Questions on section?
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2) Discharge Pebble History and 
Composition Prediction
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Pebble Assessment
• Objective: Simulate a realistic detected gamma spectrum from a 

gFHR fuel pebble and use ML to make predictions with it
• Challenges and Considerations:

– About 2,300 pebbles leave the core a day, giving us about 40 
seconds max to measure each pebble

– Even with decay times of up to several days, pebbles emit on 
the order of 1013 gammas per second

– For a detector, this could lead to serious dead time without 
prohibitively expensive shielding

• Can ML help overcome these challenges?
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Hypothetical Burnup Measurement System

Defueling 

Chute

Measurement 

Room

Concrete Wall

Max: 40s per pebble, per detector

Discarded fuel

(burnup exceeds 
threshold)

Discharged fuel

Reinserted fuel

0-10 days of cool down

Additional 

Storage*
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Detected Spectrum Generation
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Emitted Gamma Source Generation
• Discharge compositions used to generate 

spectra
– Unique, pebble-level data from HxF

• Different decay times between 0 and 10 days
– 120 second variance applied

• Spectra produced in Serpent
– Decay step (neutron mode)
– Gamma source (photon mode)
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Detector Model (HPGe)

concrete wall

Lead bricks

HPGe detector
(based on 

GMX40P4-83)

Double Cone 

Tungsten 
Collimator

Tungsten Sleeve

Attenuation Disks

Total pebble distance 250 cm

Collimator length 54 cm

Detector dimensions 6.06 x 6.69 cm

Average true count rate 220,000 cps

Fuel Pebble

Pebble           Detector

5 days of cooldown
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Detector Model (LaBr3)

concrete wall

Lead bricks

LaBr3 detector
(76x76 mm)Double Cone 

Tungsten 
Collimator

Tungsten Sleeve

Attenuation Disks

Total pebble distance 170 cm

Collimator length 27 cm

Detector dimensions 7.6 x 7.6 cm

Average true count rate 870,000 cps

Fuel Pebble

Pebble           Detector

1 day of cooldown
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Detector Response Simulation: Tally
• Simulated at 16 different source energies
• Monoenergic source sampled from pebble
• Pulse height tally in detector crystal
• Energy bins in the tally are divided to capture different 

reactions:
– Coarse bins (20-50 keV wide) for continuum
– Very fine bins for discrete energies (photopeak, pair 

production, single and double escape peaks)
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Detector Response Function
• 12000 channels from 0.25 MeV to 4.7 MeV
• Discrete peaks efficiencies are interpolated
• Continuum is fit with a RFR model
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Detector Response Matrix

Emission Spectrum
Average Incident Spectrum
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Dead time and pile-up
40s measurement time with 0.4s standard deviation
With average count rate R and measurement time t:
• Sample total counts N~Poisson(Rt)
• Sample N energies E from average spectrum

– Gaussian broadened
• Sample N waiting times t~Exp(1/R)
Events arriving:
• during peaking time are summed
• during dead time are rejected
• after are recorded normally

HPGe Dead Time 6 µs

LaBr3 Dead Time 0.016 µs
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HPGe
(5d decay)

LaBr3
(1d decay)
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Pebble Prediction



Ian Kolaja  QE - 21

Pebble Assessment: Two Layers

Nuclide 

Concentrations

History 

Parameters

ML 

Models

ML 

Models
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Nuclide Feature Importance (Ideal)
• A Random Forest Regressor 

(RFR) model is trained for each 
history parameter using actual 
concentrations from Serpent

• Informs which nuclides we need 
to predict

• Highlights physical trends and 
correlations

Nuclide Importance for Thermal 

Fluence on Last Pass
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Spectrum Feature Importance
• For each nuclide, a RFR is fit using 

the actual spectral data
• The most important channels are 

determined
• Then, a NN model is trained and its 

hyperparameters optimized using 
only useful channels

• Rarely determined by that nuclide’s 
own decay gammas

239Pu Channel Importance

140La
(t1/2 = 1.678 d)
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Final Model Training

• Neural Networks are optimized 
for each history parameter 
using the predicted important 
nuclides 

• Number of hidden layers and 
layer sizes are coarsely 
optimized in large grid search

# Epochs 300

Batch Size 256

Activation ReLU

Learning Rate 0.001

Network Sizes 

tried 

(8, 2), (64, 8), 

(128, 16), (36)

Max Depth 14

# Estimators 1000

Min. Feature Split 1

Bootstrapping True

Random Forest Regressor Parameters

Neural Network Parameters
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History Metrics Performance
R2 accuracy of model (HPGe – 40s measurement – 5d decay)

LR on full 

Spectrum

NN on pred. 

nuclides

RFR on actual 

nuclides

%FIMA (burnup) 0.8021 0.9740 1.0000

Residence Time 0.8003 0.9671 0.9999

Passes 0.7974 0.9691 0.9999

Avg radial path 

on last pass

-1.9720 0.6643 0.9554

Thermal fluence 

on last pass

-3.9159 0.5576 0.8468

Baseline             Detected             Idealized
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History Metrics Performance
R2 accuracy of model (LaBr3 – 40s measurement – 1d decay)

LR on full 

Spectrum

NN on pred. 

nuclides

RFR on actual 

nuclides

%FIMA (burnup) 0.7770 0.9856 1.0000

Residence Time 0.5851 0.9888 0.9999

Passes 0.5825 0.9848 0.9999

Avg radial path 

on last pass

-1.8001 0.8969 0.9554

Thermal fluence 

on last pass

-6.2175 0.8369 0.8468

Baseline             Detected             Idealized
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Conclusions & Future Work
• Conclusions

– Machine learning offers greater accuracy than linear regression
– Timing resolution is more important than energy resolution
– HPGe detectors may be unnecessarily expensive to run

• Future Work
– Explore other detector choices & further optimize setup

• Faster planar HPGe
• Methods like pulse reconstruction or Compton suppresion

– Run different measurement times (multiples of 40s)
– More extensive ML model optimization
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Questions on section?
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3) Predicting Core State from 
Discharge Fuel
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Core State Prediction
• Objective: Predict the overall core state using the current operating 

parameters and the predictions made from discharge pebbles
• Challenges and Considerations:

– No in-core measurements possible
– Latency: Changes to pebble insertion take at least 10 

iterations/65 days to fully propagate through the core
• Reaching new equilibria after operation change takes longer

– Extracting meaning from thousands of discharge pebbles
– Expensive to simulate long operating sequences in hyper-fidelity
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Discharge Pebble Feature Extraction

• Core simulators handle pebble movement in coarse steps
– Exact order of pebbles coming out during a timestep largely 

meaningless
– Using each discharge pebble as input would require 

massive networks
• Simple approach: Average the predicted features of all pebbles 

discharged during one time step
• Radial zone approach: Using its predicted average radial path, 

associate each pebble with a radial zone in the core, and take 
averages for each zone
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Core State Prediction

Individual 

Pebbles 
Discharged
from t0 to t1
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Operating Parameters (burnup 

threshold,power, graphite insertion fraction)

LSTM 

Models

Core State (keff, 

power and flux 
distributions)

Averaged history 

parameters 
(burnup, fluence, 

etc)
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Time Series Data Generation

• Generating long operating 
sequences in HxF expensive

• For now, a zone-based core 
simulator is used (PEARLSim)
– Explained in next section

• Features are extracted from 
zone-averaged pebbles

• Mock startup sequence 
generated with some power & 
burnup threshold perturbations

Test/train split
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RFR single time step results
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Sequence Prediction with LSTM

• Use of a Long Short-Term 
Memory (LSTM) network allows 
model to use input vectors from 
previous timesteps

• Better handles latency and 
oscillation of reactor response

• Additional hyperparameter to 
train in length of look-back 
window
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LSTM results
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Conclusions & Future Work
• Conclusions (early)

– So far, little difference in performance between averaged and 
radial-zone-averaged features

• Future Work
– Removing unphysical keff/flux oscillation in data generation

• Apparent consequence of xenon building up in fresh fuel on 
timescale shorter than one time step

– Including rod worth as target
– Generating pebble data in hyperfidelity instead of zones
– Forecasting core state X time steps into the future
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Questions on section?
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4) PEARLSim: Using ML for 
hyperfidelity core simulation
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Hyperfidelity PBR Modeling
• Objective: Speed up hyperfidelity PBR calculations to generate 

longer training sequences for core state model
• Challenges and Considerations:

– Simulating 250,000 unique pebbles computationally 
expensive
• Very high memory footprint
• Many particle histories needed for acceptable MC error

• Can ML be used to predict accurate pebble-wise flux and depletion 
coefficients to circumvent the need for hyperfidelity MC?
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PEARLSim: Hybrid approach

Zone 

Simulator

Individual 

Pebble 

Simulator

Core flux mesh Emitted gammas

Pass burnup distributions

Surface

Current
Model

Kernel 

Burnup
Model

Pebble current 

& power for 
measured 

pebbles

Pebble position

Predicted pebble

nuclides after burn

Predicted

Current

Representative

training materials

Operating 

parameters
(threshold, 

power, % 

graphite 
pebbles)

Core state features

(keff, power/flux meshes)

Actual nuclides &

history features

Pebble 

composition
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Zone Model for Core-Wide data
• Core volume divided into zones with 

similar flux
• Groups of pebbles are given average 

fuel compositions
– ~400 materials instead of 250k

• Accurately captures core-wide 
properties like keff and the 
distribution of flux/power

• Can simulate 6.5 days of operation in 
5-15 minutes
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Zone-Based Core Simulator
• Each zone has a certain proportion 

of different fuel types
• Pebble positions in zone are 

randomly assigned a fuel type
• Average flux for each group 

computed for depletion

R1          R2           R3 

Z4

Z3

Z2

Z1

Zone Z1R3:

43% Graphite Pebbles
7% Group 1 Fuel Pebbles (FuelZ1R3G1)
7% Group 2 Fuel Pebbles

…
7% Group 8 Fuel Pebbles
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Zone-Based Core Simulator
• On every iteration:

– Material data and proportions 
are moved to zone above

– Materials at the top are:
• Potentially discarded based 

on burnup
• Sorted in burnup groups and 

volume-averaged
– Averaged materials and fresh 

fuel is reinserted at the bottomFresh Fuel
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Zone-Based Core Simulator
• Reminder: changes in operating 

parameters take a while to fully 
propagate through the core

• Operating Parameters:
– Power
– Fuel insertion fractions
– Burnup discard threshold
– Burnup time stepV
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Pebble Discarding Criteria
• T, Threshold for %FIMA is set by operator
• Average burnup, ത𝑏g, is calculated for each 

fuel group at the top of the core 
• Pebble burnup 𝐵~𝑁( ഥ𝑏g, 𝜎g)

• Fraction of pebbles kept ≡ 𝑃(𝐵 < 𝑇)

• Standard deviation 𝜎g for group
– Currently assumed from HxF result
– Later will be acquired by hyperfidelity

pebble model running in parallel

Threshold, T

Assumed distribution of 
pebbles in group with ത𝑏 = 18.2

Reinserted Discarded
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Zone-Based Core Simulator Output

• Core-wide parameters as a function of 
time and operating inputs
– Keff
– Power profile by zone
– Flux profile by zone, energy group

• Zone/burnup group averaged discharge 
compositions
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PEARLSim

Zone 

Simulator

Individual 

Pebble 

Simulator

Emitted gammas

Burnup Distribution - 𝜎 by pass

Surface

Current
Model

Pebble 

Depletion 
Model

Pebble current 

& power for 
measured 

pebbles

Pebble position

Predicted pebble

nuclides after burn

Predicted

Current

Representative

training materials

Operating 

parameters
(threshold, 

power, % 

graphite 
pebbles)

Core state features

(keff, power/flux meshes)

Actual nuclides &

history features

Core flux mesh

Pebble 

composition



Ian Kolaja  QE - 61

Pebble Surface Current Model
Pebble Position (r,z)

Nuclide Concentrations

Current ML

Model

Pebble Power

% of graphite pebbles within 20 cm

Avg %FIMA of fuel pebbles within 20 cm

Flux

interpolated 
at (r,z) Power ML ModelPower interpolated 

at (r,z)
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Current Model Data Generation

R
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• Re-run select few of Serpent steps 
throughout operation history

• Add inward current tallies to outer 
surface of 5000 random pebbles
– 18 energy groups

• Extract per pebble power from pebble 
bed

• Run with much higher numbers of 
particles (3000 cycles, )

• Takes 8 hours with 4 nodes  (32 core)
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Feature Extraction: Flux/Power mesh interpolation

Raw data generated on each iteration
Single value feature computed for 

each pebble

KNN interpolation at 
each pebble (r, z)
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Pebble Surface Current Model Performance

Power MAPE: 7.41%
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PEARLSim

Zone 

Simulator

Individual 

Pebble 

Simulator

Interpolated 

core flux mesh Emitted gammasSurface

Current
Model

Pebble current 

& power for 
measured 

pebbles

Pebble position

Pebble 

composition

Predicted pebble

nuclides after burn

Predicted

Current

Representative

training materials

Operating 

parameters
(threshold, 

power, % 

graphite 
pebbles)

Core state features

(keff, power/flux meshes)

Actual nuclides &

history features

Burnup Distribution - 𝜎 by pass

Pebble 

Depletion 
Model



Ian Kolaja  QE - 66

Kernel Depletion Model

Kernel 

Burnup ML
Model

Depletion Time

Starting Nuclide Inventory

Resulting Nuclide Inventory
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Data Generation
• Random materials are sampled 

from throughout the zone 
simulator’s history to get starting 
concentrations

• A pebble with that material is 
modeled in Serpent in isolation 
with randomly selected current 
distributions and power values

• The final concentration after some 
depletion time is extracted
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Depletion Model Performance
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PEARLSim

Zone 

Simulator

Individual 

Pebble 

Simulator

Interpolated 

core flux mesh Emitted gammasSurface

Current
Model

Pebble current 
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measured 

pebbles

Pebble position

Pebble 

nuclides

Predicted pebble

nuclides after burn

Predicted

Current

Representative
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Operating 
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(threshold, 

power, % 
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Core state features

(keff, power/flux meshes)

Actual nuclides &
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Burnup Distribution - 𝜎 by pass

Pebble 

Depletion 
Model
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Individual Pebble Model

1. Update pebble locations according 
to velocity profile

2. Predict current and power for each 
pebble

3. Update nuclide inventories with 
depletion model

4. Save discharge pebble data
5. If enabled, provide burnup 

distribution data as feedback to 
zone simulator

Pebble Positions

Predicted Pebble 
Thermal Currents 1e15
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Conclusions & Future Work
• Conclusions

– Generating pebble-wise flux informed by zone simulator flux is possible
• Future Work

– Current Model
• Increase number of energy groups in current model

– Depletion Model
• Use ML instead to predict cross sections or very fine flux
• Incorporate Bateman Equation solver from OpenMC

– Explore potential accuracy gains
• Much smaller substeps feasible
• Predictor-corrector method that accounts for movement 
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Questions on section?
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Final Conclusions
Machine learning is valuable for Pebble Bed Reactor (PBR) operation 
because it enables faster and more accurate discharge fuel measurement 
and enhances core simulation capabilities
Key Insights
• We can use ML to predict a lot of information from gamma spectra 

detected from fuel, even with a lot of noise or poor energy resolution
– LaBr3 currently performs better with less shielding and few peaks

• These pebble predictions can be used with ML to predict core state
• We can use ML to generate hyperfidelity data faster 
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Thank you!
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