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Overview

Pebble bed reactors (PBRs) present unique challengesin burnup
measurement and operational modeling.

My work explores a novel method for measuring discharged fuel
pebblesand a ML framework for predicting the complex, time-
dependent reactivity behavior of PBRs.

Outline

1. Introduction

2. Pebble Assessment with Bent Crystal Diffraction Spectrometers
3. CoreState Prediction witha LSTM
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1) Introduction
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Pebble Bed Reactor (PBR) Overview

I((

- Use fuel “pebbles” instead of fuel rods
— 104-10° pebbles in the core
— Constant fuel circulation
- Features coolants other than water
— Nonreactive gas (i.e. Helium)
— Molten Salt (i.e. FLiBe)

l_--ll_-. ] -._-l
i o
LERE o

Mk1 PB-FHR schematic [2]

Pebble fuel element Cross-section TRISO particle

Schematic diagram of the pebble fuel, TRISO particle, and their
relationship, Maolong Liu [1]



Burnup Measurement in PBRs

137Cs is good burnup marker
(661keV gammavia'3’mBa)

Measuring burnup for PBR
pebbles is hard
— Pebbles leave the core every
~20s in Kairos benchmark
— High activity (10'*Bqg) can
cause dead timein many
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Example Gamma Spectra from
discharged PBR fuel

PeakEasy Ver. 4.99.5 pebble_6_100h_2.12_100cm_v5.pcf + pebble_3_100h_2.12_100cm_v3.pcf

PeakEasy Ver. 4.99.5 pebble_6_100h_2.12_100cm_v5.pcf + pebble_3_100h_2.12_100cm_v3.pcf

Livetime: 30.00 sec

Deadtime: 100.00 %

Neutrons: 0 total
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Synthetic HPGe spectrum generated with GADRAS by Don Kovacic [3]. The wide spectrum is shown (a) and the region around the 137Cs peak (b). Note the
30 second measurement time, 100% deadtime, and bin counts ranging from 10° to 108.
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2) Pebble Assessment g
with Bent Crystal ’
Diffraction

Spectrometers
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Bent Crystal Diffraction Spectrometers

- BCD Spectrometers offer a potential
solution by actingas an energy filter

— Uses perfect or mosaic crystal lattice as o "
. . . icture of crystal [4]
a diffraction grating .

— Constructively diffracts and focuses
gammas entering the crystal at a
certainangle and energy

— Usedin nuclear physics, astrophysics,
synchrotrons,and nuclear forensics

Detector
+ Shielding

Collimator

.................

Crystal
Schematic of BCD spectrometer for PBR
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Pebble Data Generation

* Pebble-wise depletion performed with HxF
— Kairos gFHR model
— 250,000 pebblesin core,average 8 passes
« History, parameters of interest,and nuclide gFHR benchmark diagram
inventory predicted for each pebble
* Serpentused to generate emitted gammaspectra
for each pebble
— 1.5 daydecay time assumed
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Generating Synthetic Measured Spectra

- SHADOW and GADRAS used 2 1] 007 P
+ Selected gammas: 661keV from 137mBa, \
106 keV from 22°Np, 133 keV from '44Ce, ¢
414 keV from'48m™Pm 1596 keV from#0La .. T
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Example diffraction pattern incident on Pebble emission spectra with GADRAS simulation from
detector with slit shielding spectrometer filter overlay incident 3’MBa spectrum
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Regression for Pebble Assessment

Spectrometer
signals

661 keV from
Ba-137m

106 keV from
Np-239

133 keV from
Ce-144

414 keV from
Pm-148m

1,596 keV from
La-140

Berkeley
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Random
Forest

Regression
Models

Pebble History
(total & last pass)

Regression scores for regression performance

U-235, Pu-239

) Bumup Parametgr Synthetic Synthetic ) )
(cumulative) Spectrometer MAPE  [Spectrometer R? Ideal” R?
, Burnup 2.28% 0.9953 1
> Averi%?hrad'a' # of Passes 2.27% 0.9880| 0.9994
Residence Time 2.57% 0.9882] 0.9994
—>»{ Fast Fluence 239Py Content 5.11% 0.8862 0.8883
» Thermal Fluence
Parameter Synthetic Synthetic
N # Passes (last pass) Spectrometer MAPE | Spectrometer R?2 “Ideal” R?
Burnup 1.59% 0.9944( 0.9948
—>» Residence Time | [Avg. Radial Path 10.84% 0.8793| 0.8814
Thermal Fluence 3.51% 0.7425( 0.8164
|y | Nuclides such as | ¢ g Fiyence 4.03% 0.9191] 0.9270
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Conclusions and Future Work

- BCDspectrometers are a powerful tool for rapid fuel pebble
assessment

- ML-powered regression enables accurate prediction of many
pebble properties and history parameters

 Future design optimization based on footprint or cost
constraints recommended

- Experiments verifying the BCD spectrometer properties and
performancein relevant environments needed
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Core State Prediction with a LSTM
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PBR Operation Challenges

« In-core measurements limited
— High temperature/flux causes thermocouple drift
— Dynamic bed leaves little room for flux detectors
+ Reactivity management more complex

— Fuel handling and operation affect reactivity on multiple
time scales

— Excess reactivity kept low and nearly constant

— “Running-in" to equilibrium can be achieved in various
ways
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Factors that affect reactivity in PBRs

Short Term Long Term

Control rod Pebble circulation Changetofuel
movement rate change insertion pattern

—

Power change Changeto Fuel depletion,
burnup limit or burnup
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Long-Short Term Memory (LSTM) Network
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This block diagram shows the structure of an LSTM recurrent
network "cell,” illustrated by lan Goodfellow et al. [5]

Beﬂ{de / lan Kolaja PhD Exit Talk - 16

UNIVERSITY OF CALIFORNIA




Model Perfo rmarnce i e —
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Running-In Optimization ...

800

« LSTMused to control core simulator

- Controls moved towards “goal” state
(i.e. 100% power, 0% graphite
pebbles, rods fully withdrawn) L e

- Impact onreactivity predicted e

« Controlsselected so reactor iscritical

« Different minimum number of
adjustments, s, used

« Model retrained eachtime
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Conclusions and Future Work

- LSTMs offerastrongtool for predicting reactivity
« Coupling core model with thermal hydraulics
* Running-in with multiple enrichments needed
- Feature engineering can be expanded

— Reduced order models (i.e. infinite lattice k)
- Other ML model options (i.e. autoencoder)
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